ファンクション(関数)の定義
話題
About: セット(集合)
この記事の目次
開始コンテキスト
- 読者は、リレーション(関係)の定義を知っている。
ターゲットコンテキスト
- 読者は、ファンクション(関数)の定義を得る。
オリエンテーション
本サイトにてこれまで議論された定義の一覧があります。
本サイトにてこれまで議論された命題の一覧があります。
本体
1: 定義
以下を満たす任意のリレーション(関係)\(F\)、つまり、各\(\langle p_1, p_2 \rangle, \langle p_1, p_3 \rangle \in F\)に対して、\(p_2 = p_3\)、それが意味するのは、ドメイン(定義域)の任意の要素はレンジ(値域)内にユニークな対応する要素を持つということ
2: 注
'マップ(写像)'は本定義における'ファンクション(関数)'とは違う、コドメイン(余域)(それは必ずしもレンジ(値域)に等しくない)を持っているという点において、マップ(写像)はしばしば"ファンクション(関数)"と呼ばれるが。