2022年1月16日日曜日

3: 命題の一覧

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

本サイトにてこれまで議論された命題の一覧

話題


About: 命題

この記事の目次


開始コンテキスト


  • なし

ターゲットコンテキスト



  • 読者は、本サイトにてこれまで議論された命題の一覧を知り、それらの内のいずれのページ(その命題の記述および証明がある)へもジャンプできる。

オリエンテーション


本サイトにてこれまで議論された定義の一覧があります。


本体


1: 命題の一覧


タイトル
ハウスドルフトポロジカルスペース(空間)の1ポイントサブセット(部分集合)はクローズド(閉)である
ファーストカウンタブルトポロジカルスペース(空間)はシーケンシャリー(シーケンス的に)コンパクトである、もしも、それがカウンタブリー(可算に)コンパクトである場合
コネクテッド(連結された)トポロジカルスペース(空間)からの以下を満たす2つのコンティニュアス(連続)マップ(写像)たち、つまり、任意のポイントに対して、もしもそれらがポイントにおいて一致すれば、それらはネイバーフッド(近傍)上で一致し、もしもそれらがポイントにおいて不一致であれば、それらはネイバーフッド(近傍)上で不一致である、は全体として一致するか全体として不一致である
コネクテッド(連結された)トポロジカルスペース(空間)からハウスドルフトポロジカルスペース(空間)の中への以下を満たす2つのコンティニュアス(連続)マップ(写像)たち、つまり、任意のポイントに対して、もしもそれらがポイントにおいて一致すれば、それらはネイバーフッド(近傍)で一致する、は全体として一致するか全体として不一致である
ハウスドルフトポロジカルスペース(空間)の中への2つのコンティニュアス(連続)マップ(写像)たちでポイントで不一致であるものはポイントのネイバーフッド(近傍)で不一致である
2つのメトリック(計量)たちで互いに条件を満たしているものたちは同一トポロジーを定義する
2ポイントたちはトポロジカルにパスコネクテッド(連結された)である、もしも2ポイントたちをコネクト(連結)するパスがある場合、そしてその場合に限って
トポロジカルサブスペース(部分空間)上でパスコネクテッド(連結された)である2ポイントたちは、より大きなサブスペース(部分空間)上でパスコネクテッド(連結された)である
コネクト(連結)されたリーグループ(群)上の2ポイントは、有限数左インバリアント(不変)ベクトルフィールド(場)インテグラルカーブ(積分曲線)セグメントによって接続できる
別々のコネクテッド(連結された)コンポーネントたち上の2ポイントたちはパスコネクテッド(連結された)でない
2 x 2スペシャル(特殊)オーソゴーナル(直交)マトリックス(行列)は角度のサインおよびコサインで表現できる
2 x 2スペシャル(特殊)ユニタリマトリックス(行列)は角度のサインおよびコサインおよび2つの角度たちのイマジナリー(虚数)エクスポーネンシャル(指数関数)たちで表わすことができる
複素数たち間の絶対差は追加の複素数との絶対差たち間の差以上である
ダイレクテッド(有向)インデックスセット(集合)によるネットのアキュームレーションバリュー(集積値)はサブネットのコンバージェンス(収束ポイント)である
リアル(実)ベクトルたちスペース(空間)上のベースポイントたちの任意のアファインインディペンデント(独立)でないかもしれないセット(集合)によってスパンされる(張られる)アファインまたはコンベックスセット(集合)からのアファインマップ(写像)はリニア(線形)である
リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないセット(集合)によってスパンされる(張られる)アファインセット(集合)はベースポイントたちのアファインインディペンデント(独立)サブセット(部分集合)によってスパンされる(張られる)アファインセット(集合)である
ファイナイト(有限)次元リアル(実)ベクトルたちスペース(空間)のアファインサブセット(部分集合)はベースポイントたちのファイナイト(有限)アファインインディペンデント(独立)セット(集合)によってスパンされる(張られる)
ハイパー長方形のエリア(面積)は、カバーする有限数ハイパー正方形たちのエリア(面積)で任意の精度で近似できる
ユークリディアンメトリックスペース(計量空間)上のエリア(面積)はハイパー正方形たちのみを使って測れる、ハイパー長方形たちの代わりに
ベーシス(基底)はトポロジーを決定する
ユークリディアンノルム付き\(C^\infty\)マニフォールド(多様体)上のオープンセット(開集合)からユークリディアンノルム付き\(C^\infty\)マニフォールド(多様体)への\(C^1\)マップ(写像)はリプシッツ条件をローカルに満たす
ファイナイト(有限)プロダクトトポロジカルスペース(空間)上のファンダメンタルグループ(群)から構成要素トポロジカルスペース(空間)ファンダメンタルグループ(群)たちのプロダクトの中へのカノニカル(自然な)マップ(写像)は'グループ(群)たち - グループ(群)ホモモーフィズム(準同形写像)たち'アイソモーフィズム(同形写像)である
カントールノーマルフォーム(正規形)はユニークである
セット(集合)の複数回分の積のカーディナリティ(濃度)はセット(集合)のカーディナリティ(濃度)のその回数分の積である
カテゴリーたちイクイバレンス(同値)はイクイバレンスリレーション(同値関係)である
リアル(実)またはコンプレックス(複素)インナープロダクト(内積)付きベクトルたちスペース(空間)に対するコーシー・シュワルツ不等式
ユークリディアンノルム付きユークリディアンベクトルたちスペース(空間)たちC^1マップ(写像)たちのコンポジション(合成)のデリバティブ(微分係数)に対するチェインルール(連鎖規則)
ディスジョイント(互いに素な)ユニオン(和集合)の特性プロパティ
プロダクトトポロジーの特性プロパティ
サブスペース(部分空間)トポロジーの特性プロパティ
レギュラーサブマニフォールド(多様体)上のチャートはアダプティングチャートの拡張である
\(C^\infty\)マニフォールド(多様体)上の\(C^\infty\)ファンクション(関数)はレギュラーサブマニフォールド(多様体)上で\(C^\infty\)である
\(C^\infty\)ベクトルたちフィールド(場)はその、全\(C^\infty\)ベクトルたちフィールドたちとの\(C^\infty\)メトリック(計量)値ファンクション(関数)たちによってユニークに定義される
レギュラーサブマニフォールド(多様体)上の\(C^\infty\)ベクトルたちフィールド(場)はスーパーマニフォールド(多様体)上のレギュラーサブマニフォールド(多様体)に沿ったベクトルたちフィールド(場)として\(C^\infty\)である
クローズドインターバル(閉区間)からユークリディアン\(C^\infty\)マニフォールド(多様体)のサブセット(部分集合)の中へのマップ(写像)のバウンダリー(境界)ポイントにおける\(C^k\)性は片方向デリバティブ(微分係数)たちにコンティニュアス(連続)性が付いたものたちの存在に等しく、デリバティブ(微分係数)たちは片方向デリバティブ(微分係数)たちである
トポロジカルスペース(空間)たち間のクローズド(閉)コンティニュアス(連続)マップ(写像)でコンパクトファイバーたちをを持っているものはプロパーである
コンパクトトポロジカルスペース(空間)のクローズド(閉)ディスクリート(離散)サブスペース(部分空間)は有限数ポイントたちのみを持つ
クローズドセット(閉集合)マイナスオープンセット(開集合)はクローズド(閉)である
クローズド(閉)トポロジカルサブスペース(部分空間)上のクローズドセット(閉集合)はベーススペース(空間)上でクローズド(閉)である
ローカルにコンパクトなトポロジカルスペース(空間)のクローズド(閉)サブスペース(部分空間)はローカルにコンパクトである
サブセット(部分集合)たちの差のクロージャー(閉包)は、必ずしもサブセット(部分集合)たちのクロージャー(閉包)たちの差ではない、しかし、被減サブセット(部分集合)のクロージャー(閉包)に包含されている
トポロジカルサブグループ(部分群)のノーマル(正規)サブグループ(部分群)のクロージャー(閉包)はノーマル(正規)サブグループ(部分群)である
トポロジカルグループ(群)のサブグループ(部分群)のクロージャー(閉包)はサブグループ(部分群)である
サブセット(部分集合)のクロージャー(閉包)はサブセット(部分集合)とサブセット(部分集合)のアキューミュレーションポイント(集積点)たちセット(集合)のユニオン(和集合)である
有限個サブセット(部分集合)たちのユニオン(和集合)のクロージャー(閉包)はサブセット(部分集合)たちのクロージャー(閉包)たちのユニオン(和集合)である
任意の非0カーディナル番号に対して、当該カーディナリティを持つセット(集合)たちのコレクションはセット(集合)ではない
コンパクトトポロジカルスペース(空間)は、無限数ポイントたちを持つサブセット(部分集合)のアキュームレーションポイント(集積点)を持つ
トポロジカルサブセット(部分集合)のサブセット(部分集合)としてのコンパクト性はサブスペース(部分空間)としてのコンパクト性に等しい
ノーホエアデンス(どこでも密でない)サブセット(部分集合)のコンプリメント(補集合)はデンス(密)である
オープン(開)デンス(密)サブセット(部分集合)のコンプリメント(補集合)はノーホエアデンス(どこでも密でない)である
サブセット(部分集合)たちのプロダクトのコンプリメント(補集合)は、セット(集合)全体たちのうちの1つがサブセット(部分集合)のコンプリメント(補集合)で置き換えられたもののプロダクトたちのユニオン(和集合)である
アファインマップ(写像)たちのコンポジション(合成)はアファインマップ(写像)である
プリイメージ(前像)の後のマップ(写像)合成は引数セット(集合)内に含まれている
プリイメージ(前像)後のマップ(写像)コンポジション(合成)はアイデンティカル(恒等)である、もしも、引数セット(集合)がマップ(写像)イメージ(像)のサブセット(部分集合)である場合、そしてその場合に限って
サブセット(部分集合)のマップ(写像)の後のプリイメージ(前像)コンポジション(合成)は引数セット(集合)を包含している
サブセット(部分集合)のマップ(写像)後のプリイメージ(前像)のコンポジション(合成)はアイデンティカル(恒等)である、もしも、マップ(写像)が引数セット(集合)イメージ(像)に関してインジェクティブ(単射)である場合
サブセット(部分集合)のマップ(写像)後のプリイメージ(前像)のコンポジション(合成)はアイデンティカル(恒等)である、もしも、それが引数セット(集合)に包含されている場合、そしてその場合に限って
ホモトピックマップ(写像)たちのコンポジション(合成)たちはホモトピックである
コンプレックス(複素)数たちユークリディアントポロジカルスペース(空間)からコンプレックス(複素)数たちユークリディアントポロジカルスペース(空間)の上へのコンジュゲーション(共役)はホメオモーフィズム(位相同形写像)である
コネクテッド(連結された)コンポーネントはクローズド(閉)である
コネクテッド(連結された)コンポーネントはローカルにコネクテッド(連結された)トポロジカルスペース(空間)上でオープン(開)である
コネクテッド(連結された)トポロジカルコンポーネントは、より大きくはできないコネクテッド(連結された)トポロジカルサブスペース(部分空間)に他ならない
コネクテッド(連結された)トポロジカルマニフォールド(多様体)はパスコネクテッド(連結された)である
1ディメンジョナル(次元)ユークリディアントポロジカルスペース(空間)のコネクテッド(連結された)トポロジカルサブスペース(部分空間)たちはインターバル(区間)たちである
コネクション(接続)はベクトルカーブ上のセクション(断面)値のみに依存する
トポロジカルスペース(空間)たち間コンティニュアス(連続)エンベディング(埋め込み)でクローズド(閉)レンジ(値域)を持つものはプロパーである
ドメイン(定義域)のパスコネクテッド(連結された)サブスペース(部分空間)のコンティニュアス(連続)イメージ(像)はコドメイン(余域)上でパスコネクテッド(連結された)である
コンパクトトポロジカルスペース(空間)からハウスドルフトポロジカルスペース(空間)の中へのコンティニュアス(連続)マップ(写像)はプロパーである
トポロジカルスペース(空間)からハウスドルフトポロジカルスペース(空間)の中へのコンティニュアス(連続)マップ(写像)でコンティニュアス(連続)左インバース(逆)を持つものはプロパーである
トポロジカルスペース(空間)間のコンティニュアス(連続)サージェクション(全射)はクウォシェント(商)マップ(写像)である、もしも、任意のコドメイン(余域)サブセット(部分集合)はそのプリイメージ(前像)がクローズド(閉)である場合クローズド(閉)である場合
クローズドセット(閉集合)のコンティヌアス(連続)マップ(写像)プリイメージ(前像)はクローズドセット(閉集合)である
コントラクション(収斂)マッピングの法則
リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないセット(集合)によってスパンされる(張られる)コンベックスセット(集合)は必ずしもベースポイントたちのアファインインディペンデント(独立)なサブセット(部分集合)によってスパンされる(張られる)アファインシンプレックス(単体)ではない
リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれないセット(集合)によってスパンされる(張られる)コンベックスセット(集合)はコンベックスである
インバース(逆)リーマニアンメトリック(計量)のコーディネートたちマトリックス(座標行列)はリーマニアンメトリック(計量)のコーディネートたちマトリックス(座標行列)のインバース(逆)である
シンプリー(単純に)コネクテッド(連結された)トポロジカルスペース(空間)の中へのカバリングマップ(写像)はホメオモーフィズム(位相同形写像)である
オープンセット(開集合)たちのコレクションがベーシス(基底)であるための基準
リーグループ(群)上で同一ベクトルを代表するカーブたちの\(C^\infty\)右アクションとしてのマニフォールド(多様体)上のカーブたちは同一ベクトルを代表する
\(C^1\)、ユークリディアンノルム付きユークリディアンベクトルたちスペース(空間)たち間マップ(写像)のデリバティブ(微分係数)はヤコビアンである
オーディナル(順序)数たちコレクションからオーディナル(順序)数たちコレクションの中へのモノトーン(単調)コンティニュアス(連続)オペレーションの導出されたオペレーションはモノトーン(単調)コンティニュアス(連続)である
オーディナル(順序)数たちの降順シーケンス(列)は有限である
スクウェア(正方)マトリックス(行列)でその最終行は全て1でその他の各行は行番号 + 1列 1を除いて全て0であるもののデターミナント(行列式)は-1の次元 + 1乗である
サブセット(部分集合)たちのマップ(写像)イメージ(像)たちの差分はサブセット(部分集合)たちの差分のマップ(写像)イメージ(像)に包含されている
サブセット(部分集合)たちのマップ(写像)イメージ(像)たちの差分はサブセット(部分集合)たちの差分のマップ(写像)イメージ(像)である、もしも、マップ(写像)がインジェクティブ(単射)である場合
クローズドセット(閉集合)たちのディスジョイント(互いに素な)ユニオン(和集合)はディスジョイント(互いに素な)ユニオン(和集合)トポロジーにおいてクローズド(閉)である
コンプリメント(補集合)たちのディスジョイント(互いに素)ユニオン(和集合)はセット(集合)全体たちのディスジョイント(互いに素)ユニオン(和集合)マイナスサブセット(部分集合)たちのディスジョイント(互いに素)ユニオン(和集合)である
有限次元リアル(実)ベクトルスペース(空間)のダブルデュアルはベクトルスペース(空間)へ 'ベクトルスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィック(同形写像)である
有限次元リアル(実)ベクトルスペース(空間)のデュアルは同一次元ベクトルスペース(空間)を構成する
\(C^1\)ファンクション(関数)たちのポイントにおけるデライベイション(微分)とディレクショナル(方向)デリバティブ(微分)の等価性
マップ(写像)コンティヌアス(連続)性の、トポロジー上の意味におけるものとコーディネイト(座標)ファンクション(関数)たちに対するノルムの意味におけるものとの同値性
ユークリディアントポロジカルスペース(空間)はセカンドカウンタブル(可算)である
ユークリディアントポロジカルスペース(空間)内にネストされたユークリディアントポロジカルスペース(空間)はトポロジカルサブスペース(部分空間)である
リーグループ(群)近傍で、その任意のポイントが中心と、左インバリアント(不変)ベクトルフィールド(場)インテグラルカーブ(積分曲線)で接続できるものの存在
コンティニュアス(連続)マップ(写像)のエクスパンション(拡張)はコンティニュアス(連続)である
有限次元リアル(実)ベクトルスペース(空間)の、コーディネイト(座標)スペース(空間)に基づいて定義されたトポロジーはベーシス(基底)の選択に依存しない
リニア(線形)バイジェクション(全単射)によって関連付けられる有限次元ベクトルスペース(空間)たちは同一次元のものである
トポロジカルスペース(空間)のオープン(開)デンス(密)サブセット(部分集合)たちの有限インターセクション(共通集合)はオープン(開)デンス(密)である
コンパクトトポロジカルスペース(空間)たちのファイナイト(有限)プロダクトはコンパクトである
ローカルにコンパクトなトポロジカルスペース(空間)たちのファイナイト(有限)プロダクトはローカルにコンパクトである
セット(集合)たちの有限プロダクトはセット(集合)である
トポロジカルスペース(空間)たちの有限プロダクトはトポロジカルスペース(空間)たちの逐次プロダクトたちに等しい
トポロジカルスペース(空間)のノーホエアデンス(どこでも密でない)サブセット(部分集合)たちのファイナイト(有限)ユニオン(和集合)は空のインテリア(内部)を持つ
ヴェブレン固定されたポイント定理の証明における固定されたポイントは、条件を満たす最小のものである
ファーストカウンタブル(可算)トポロジカルスペース(空間)に対して、ポイントたちシーケンス(列)およびサブセット(部分集合)についてのいくつかの事実
2つのホモトピックマップ(写像)たち、ドメイン(定義域)上のポイント、マップ(写像)たちによってインデュースト(誘導された)ファンダメンタルグループ(群)ホモモーフィズム(準同形写像)たちに対して、第2のホモモーフィズム(準同形写像)は、ホモモーフィズム(準同形写像)たちのコドメイン(余域)間カノニカル(自然な)'グループ(群)たち - グループ(群)ホモモーフィズム(準同形写像)たち'アイソモーフィズム(同形写像)を第1ホモモーフィズム(準同形写像)の後に作用させるコンポジション(合成)である
トポロジカルスペース(空間)上の2つのパスコネクテッド(連結された)ポイントたちに対して、ファンダメンタルグループ(群)たち間'グループ(群)たち - グループ(群)ホモモーフィズム(準同形写像)たち'アイソモーフィズム(同形写像)でパスクラスたちグルーポイド内にて左からインバース(逆)パスクラスを掛け右からパスクラスを掛けるものがある
2つのセット(集合)たちに対して、セット(集合)たち間のファンクション(関数)たちのコレクションはセット(集合)である
2つのセット(集合)たちに対して、セット(集合)間のリレーション(関係)たちのコレクションはセット(集合)である
アジャンクション(付加)トポロジカルスペース(空間)に対して、アタッチング先スペース(空間)からアジャンクション(付加)スペース(空間)へのカノニカルマップ(写像)はコンティニュアス(連続)エンベディング(埋め込み)である
バイジェクション(全単射)に対して、マップ(写像)のインバース(逆)の下でのサブセット(部分集合)のプリイメージ(前像)はマップ(写像)の下でのサブセット(部分集合)のイメージ(像)である
オープンネイバーフッド(開近傍)上の\(C^\infty\)ファンクション(関数)に対して、マニフォールド(多様体)上の\(C^\infty\)ファンクション(関数)でより小さいかもしれないネイバーフッド(近傍)上でファンクション(関数)に等しいものが存在する
\(C^\infty\)マニフォールド(多様体)、そのレギュラーサブマニフォールド(多様体)に対して、スーパーマニフォールド(多様体)のオープンサブセット(開部分集合)は\(C^\infty\)マニフォールド(多様体)であり、オープンサブセット(開部分集合)とレギュラーサブマニフォールド(多様体)のインターセクション(共通集合)はオープンサブセット(開部分集合)マニフォールド(多様体)のレギュラーサブマニフォールド(多様体)である
\(C^\infty\)マニフォールド(多様体)たち間\(C^\infty\)マップ(写像)に対して、マップ(写像)の、レギュラーサブマニフォールド(多様体)ドメイン(定義域)およびレギュラーサブマニフォールド(多様体)コドメイン(余域)についてのリストリクション(制限)は\(C^\infty\)である
\(C^\infty\)ベクトルたちバンドル(束)に対して、グローバルコネクション(接続)を構築することができる、オープンカバー(開被覆)上方のローカルコネクション(接続)たちを使い、オープンカバー(開被覆)にサブオーディネイトな(従属する)ユニティのパーティションを使って
コンパクト\(C^\infty\)マニフォールド(多様体)に対して、ポイントのシーケンス(列)は、収束するサブシーケンス(部分列)を持つ
コンプリート(完備)メトリックスペース(計量付き空間)に対して、クローズド(閉)サブスペース(部分空間)はコンプリート(完備)である
サブグループ(部分群)に関するコセット(剰余類)マップ(写像)に対して、サブセット(部分集合)のイメージ(像)のプリイメージ(前像)はサブグループにサブセット(部分集合)を掛けたものである
カバリングマップ(写像)に対して、コネクテッド(連結された)トポロジカルスペース(空間)からのコンティニュアス(連続)マップ(写像)の2つのリフトたちは全体として一致するか全体として不一致であるかである
カバリングマップ(写像)に対して、パスコネクテッド(連結された)ローカルにパスコネクテッド(連結された)トポロジカルスペース(空間)からのコンティニュアス(連続)マップ(写像)のリフトが存在するための条件
カバリングマップ(写像)に対して、パスたちのプロダクト(積)のリフトはパスたちのリフトたちのプロダクト(積)である
カバリングマップ(写像)に対して、パスのリバース(反転)のリフトはパスのリフトのリバース(反転)である
カバリングマップ(写像)に対して、クローズド(閉)リアル(実)インターバル(区間)たちのファイナイト(有限)プロダクトからのコンティニュアス(連続)マップ(写像)のユニークなリフトが各初期値に対してある
カバリングマップ(写像)に対して、パスのユニークなリフトが、パスドメイン(定義域)上のポイントのパスイメージ(像)のカバリングマップ(写像)プリイメージ(前像)の中の各ポイントに対してある
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)からバウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)上のポイントイメージ(像)のネイバーフッド(近傍)上へのディフェオモーフィズムに対して、ポイントにおけるディファレンシャルは'ベクトルたちスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィズム(同形写像)である
ディスジョイント(互いに素)なサブセット(部分集合)とオープンセット(開集合)に対して、サブセット(部分集合)のクロージャー(閉包)とオープンセット(開集合)はディスジョイント(互いに素)である
ディスジョイント(互いに素な)ユニオン(和集合)トポロジカルスペース(空間)に対して、構成要素トポロジカルスペース(空間)からディスジョイント(互いに素な)ユニオン(和集合)トポロジカルスペース(空間)へのインクルージョン(封入)はコンティニュアス(連続)である
ユークリディアン\(C^\infty\)マニフォールド(多様体)、そのレギュラーサブマニフォールド(多様体)に対して、レギュラーサブマニフォールド(多様体)に沿ったベクトルたちフィールド(場)は\(C^\infty\)である、もしも、スタンダード(標準)チャートに関するそのコンポーネントたちがレギュラーサブマニフォールド(多様体)上で\(C^\infty\)である場合、そしてその場合に限って
ユークリディアントポロジカルスペース(空間)に対して、ラショナル(有理)中心とラショナル(有理)半径を持った全てのオープンボール(開球)たちのセット(集合)はベーシス(基底)である
リアル(実)ベクトルたちスペース(空間)上のポイントたちのファイナイト(有限)セット(集合)に対して、もしも、ポイントに対して、ポイントの他のポイントたちからの差たちのセット(集合)がリニア(線形)にインディペンデント(独立)である場合、それは各ポイントに対してそうである
ファイナイト(有限)プロダクトトポロジカルスペース(空間)に対して、ネイバーフッド(近傍)たちのプロダクトはネイバーフッド(近傍)である
グループ(群)、シンメトリックサブセット(対称的部分集合)、グループ(群)の要素、サブセット(部分集合)に対して、要素にシンメトリックサブセット(対称的部分集合)を右または左から掛けたものとシンメトリックサブセット(対称的部分集合)にサブセット(部分集合)を右または左から掛けたものはディスジョイント(互いに素)である、もしも、要素にシンメトリックサブセット(対称的部分集合)を左および右から掛けたものとサブセット(部分集合)がディスジョイント(互いに素)である場合
ハウスドルフトポロジカルスペース(空間)および2つのディスジョイント(互いに素な)コンパクトサブセット(部分集合)たちに対して、ディスジョイント(互いに素な)オープン(開)サブセット(部分集合)たちでそれらの各々がコンパクトサブセット(部分集合)を包含するものがある
ハウスドルフトポロジカルスペース(空間)に対して、ダイレクテッド(有向)インデックスセット(集合)によるネットは唯1つだけのコンバージェンス(収束ポイント)を持ち得る
'インディペンデントバリアブル(独立変数)'-バリュー(値)ペアたちデータに対して、オリジン(原点)を通過する近似ライン(直線)でバリュー(値)差異スクウェア(2乗)たち計最小を持つものを選ぶことはバリュー(値)たちベクトルをインディペンデントバリアブル(独立変数)たちベクトルライン(直線)へプロジェクト(射影)することに等しい
インフィニット(無限)プロダクトトポロジカルスペース(空間)およびクローズドサブセット(閉部分集合)に対して、プロダクトスペース(空間)上のポイントでその各ファイナイト(有限)コンポーネントたちプロジェクション(射影)がサブセット(部分集合)の対応するプロジェクション(射影)に属するものはサブセット(部分集合)に属する
インフィニット(無限)プロダクトトポロジカルスペース(空間)およびサブセット(部分集合)に対して、プロダクトスペース(空間)上のポイントでその各ファイナイト(有限)コンポーネントたちプロジェクション(射影)がサブセット(部分集合)の対応するプロジェクション(射影)に属するものは、必ずしもサブセット(部分集合)に属さない
トポロジカルスペース(空間)たち間インジェクティブ(単射)クローズド(閉)マップ(写像)に対して、コドメイン(余域)をレンジ(値域)に制限したマップ(写像)のインバース(逆)はコンティニュアス(連続)である
オーディナル(順序)数たちコレクションからオーディナル(順序)数たちコレクションの中へのインジェクティブ(単射)モノトーン(単調)コンティニュアス(連続)オペレーションおよびドメイン(定義域)のサブセット(部分集合)のイメージ(像)に対して、イメージ(像)のユニオン(和集合)はレンジ(余域)の中にいる
トポロジカルスペース(空間)の2サブセット(部分集合)たちのインターセクション(共通集合)に対して、その、一方のサブセット(部分集合)をサブスペース(部分空間)としてそのサブスペース(部分空間)とみなしたもの、その、他方のサブセット(部分集合)をサブスペース(部分空間)としてそのサブスペース(部分空間)とみなしたもの、その、ベーススペース(基底空間)のサブスペース(部分空間)とみなしたもの、たちは同一である
有限次元ベクトルスペース(空間)からのリニアマップ(線形写像)に対して、あるドメイン(定義域)サブスペース(部分空間)があって、それは、イメージ(像)へマップ(写像)のリストリクション(制限)によって'ベクトルスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィック(同形写像)である
ローカルにコンパクトなハウスドルフトポロジカルスペース(空間)に対して、ポイントの周りに、オープンネイバーフッド(開近傍)でそのクロージャー(閉包)がコンパクトであるものがある
ローカルにコンパクトなハウスドルフトポロジカルスペース(空間)に対して、ポイントの周りのネイバーフッド(近傍)内にオープンネイバーフッド(開近傍)でそのクロージャー(閉包)がコンパクトでネイバーフッド(近傍)に包含されているものがある
トポロジカルスペース(空間)のローカルに有限なカバーに対して、コンパクトなサブセット(部分集合)はカバーの有限数要素たちのみとインターセクトする
トポロジカルスペース(空間)のローカルに有限なオープンカバー(開被覆)に対して、オープンセット(開集合)たちのユニオン(和集合)のクロージャー(閉包)はオープンセット(開集合)たちのクロージャー(閉包)たちのユニオン(和集合)である
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)でポイントにおいて\(C^k\)であるものに対して、ドメイン(定義域)チャートとコドメイン(余域)チャートの任意の可能なペアは定義の条件を満たす
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)でポイントにおいて\(C^k\)であるものに対して、ポイントを包含するドメイン(定義域)についてのリストリクション(制限)はポイントにおいて\(C^k\)である
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)でポイントにおいて\(C^k\)であるものに対して、レンジ(値域)を包含するコドメイン(余域)についてのリストリクション(制限)またはエクスパンション(拡張)はポイントにおいて\(C^k\)である
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)でポイントにおいてローカルにディフェオモーフィックであるものに対して、ドメイン(定義域)のポイントを包含するオープンサブセット(開部分集合)についてのリストリクション(制限)はポイントにおいてローカルにディフェオモーフィックである
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)に対して、マップ(写像)はポイントにおいて\(C^k\)である、もしも、ポイントのサブスペース(部分空間)オープンネイバーフッド(開近傍)ドメイン(定義域)についてのリストリクション(制限)がポイントにおいて\(C^k\)である場合
ユークリディアン\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)に対して、マップ(写像)はポイントにおいて\(C^k\)である、もしも、ポイントのサブスペース(部分空間)オープンネイバーフッド(開近傍)ドメイン(定義域)についてのリストリクション(制限)がポイントにおいて\(C^k\)である場合
ユークリディアン\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)でポイントにおいて\(C^k\)であるものに対して、ポイントを包含するドメイン(定義域)についてのリストリクション(制限)はポイントにおいて\(C^k\)である
リアル(実)クローズド(閉)インターバル(区間)たち間マップ(写像)およびマップ(写像)のグラフをトポロジカルサブスペース(部分空間)とみなしたものに対して、値が独立変数より大きいか小さいかであるというサブセット(部分集合)はオープン(開)である
ポイントにおいて\(C^\infty\)なマップ(写像)に対して、任意のチャートたちによるコーディネート(座標)たちファンクション(関数)はポイントイメージ(像)において\(C^\infty\)である
トポロジカルスペース(空間)からメトリックスペース(計量空間)へのマップ(写像)に対して、クローズドセット(閉集合)のイメージ(像)はドメイン(定義域)のイメージ(像)上でクローズド(閉)である、もしも、クローズドセット(閉集合)上の任意のシーケンスでシーケンスのイメージ(像)がドメイン(定義域)のイメージ(像)上で収束するものに対して、収束ポイントがクローズドセット(閉集合)のイメージ(像)上にいる場合
ユークリディアン\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)たちで対応するポイントたちにおいて\(C^k\)であるものたちに対して、コンポジション(合成)はポイントにおいて\(C^k\)である
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)たちで対応するポイントたちにおいて\(C^k\)であるものたちに対して、コンポジション(合成)はポイントにおいて\(C^k\)である
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)たちで対応するポイントたちにおいてローカルにディフェオモーフィックであるものたち、ここで、第1のマップ(写像)のコドメイン(余域)は第2のマップ(写像)のドメイン(定義域)のオープンサブセット(開部分集合)である、に対して、コンポジション(合成)はポイントにおいてローカルにディフェオモーフィックである
メトリックスペース(計量空間)に対して、1ポイントサブセット(部分集合)はクローズド(閉)である
メトリックスペース(計量空間)に対して、2ポイントたちのサブセット(部分集合)からの距離たちの差はポイントたち間の距離に等しいかそれより小さい
メトリックスペース(計量付き空間)に対して、2つのオープンボール(開球)たちの中のポイントたちの間のディスタンス(距離)は、中心たちの間のディスタンス(距離)マイナス半径たちの合計より大きく中心たちの間のディスタンス(距離)プラス半径たちの合計より小さい
オーディナル(順序)数たちコレクションからオーディナル(順序)数たちコレクションの中へのモノトーン(単調)コンティニュアス(連続)オペレーションに対して、リミットオーディナル(順序)数のイメージ(像)はリミットオーディナル(順序)数である
オーディナル(順序)数たちコレクションからオーディナル(順序)数たちコレクションの中へのモノトーン(単調)オペレーションに対して、値は引数に等しいか引数を包含する
モノトーン(単調)オーディナル(順序)数たちオペレーションに対して、2つのドメイン(定義域)要素たちはメンバーシップリレーション(関係)にある、もしも、対応するイメージ(像)たちが同じリレーション(関係)にある場合
部分的オーダリング(順序)を持ち最小要素を持たない空でないセット(集合)に対して、自然数たちセット(集合)からセット(集合)へのファンクション(関数)で、数のイメージ(像)は次の数のイメージ(像)より大きいというものがある
ノーマル(正規)トポロジカルスペース(空間)に対して、クローズドサブセット(閉部分集合)によるコラプスト(折りたたまれた)トポロジカルスペース(空間)はノーマル(正規)である
プロダクトトポロジカルスペース(空間)に対して、コンパクトサブセット(部分集合)のプロジェクション(射影)はコンパクトである
2つの\(C^\infty\)マニフォールド(多様体)たちのプロダクトに対して、構成員たちの内の1つがレギュラーサブマニフォールド(多様体)で置き換えられたプロダクトはレギュラーサブマニフォールド(多様体)である
レギュラー(正則)トポロジカルスペース(空間)に対して、クローズドサブセット(閉部分集合)によるコラプスト(折りたたまれた)トポロジカルスペース(空間)はハウスドルフである
クウォシェント(商)マップ(写像)に対して、コドメイン(余域)サブセット(部分集合)はクローズド(閉)である、もしも、サブセット(部分集合)のプリイメージ(前像)がクローズド(閉)である場合
クウォシェント(商)マップ(写像)に対して、ドメイン(定義域)のマップ(写像)によるクウォシェント(商)スペース(空間)からコドメイン(余域)へのインデュースト(誘導された)マップ(写像)はコンティニュアス(連続)である
クウォシェント(商)マップ(写像)に対して、オープン(開)またはクローズド(閉)サチュレイテッド(飽和した)ドメイン(定義域)についておよびリストリクテッド(制限された)イメージ(像)コドメイン(余域)についてのそのリストリクション(制限)はクウォシェント(商)マップ(写像)である
レギュラー(正則)トポロジカルスペース(空間)に対して、ポイントのネイバーフッド(近傍)はクローズド(閉)なネイバーフッド(近傍)を包含する
トポロジカルスペース(空間)上のシーケンスに対して、ポイントの周りに、シーケンスの有限数ポイントたちのみを包含するオープンセット(開集合)がある、もしも、どのサブシーケンスもポイントに収束しない場合
セット(集合)プラス要素としてのセット(集合)に対して、オープンセット(開集合)たちを、セット(集合)のサブセット(部分集合)たちとコンプリメントが有限であるサブセット(部分集合)たちとしたもの、はトポロジーである
固定されたドメイン(定義域)およびコドメイン(余域)に対するシーケンス(列)たちのセット(集合)に対して、パーミュテーション(並べ替え)はバイジェクティブ(全単射)にセット(集合)をセット(集合)の上へマップする
セット(集合)たちのセット(集合)に対して、ダイコトミカリー(2分割的に)非ディスジョイント(互いに素)は必ずしもペアワイズ(ペア毎)非ディスジョイント(互いに素)を意味しない
トポロジカルスペース(空間)のサブセット(部分集合)に対して、サブセット(部分集合)のクロージャー(閉包)マイナスサブセット(部分集合)は空のインテリア(内部)を持っている
トポロジカルスペース(空間)およびサブスペース(部分空間)上のポイントに対して、ポイントのベーススペース(空間)上のネイバーフッド(近傍)とサブスペース(部分空間)のインターセクション(共通集合)はサブスペース(部分空間)上でネイバーフッド(近傍)である
トポロジカルスペース(空間)に対して、サブスペース(部分空間)のコンパクトサブセット(部分集合)はベーススペース(空間)上でコンパクトである
トポロジカルスペース(空間)に対して、ベーシス(基底)とサブスペース(部分空間)のインターセクション(共通集合)はサブスペース(部分空間)に対するベーシス(基底)である
トポロジカルスペース(空間)に対して、コンパクトサブセット(部分集合)とサブスペース(部分空間)のインターセクション(共通集合)は必ずしもサブスペース(部分空間)上でコンパクトではない
トポロジカルスペース(空間)に対して、スペース(空間)のオープン(開)でクローズド(閉)なサブセット(部分集合)はスペース(空間)のコネクテッド(連結された)コンポーネントたちのユニオン(和集合)である
トポロジカルスペース(空間)に対して、コンパクトサブセット(部分集合)のサブセット(部分集合)は必ずしもコンパクトではない
トポロジカルスペース(空間)に対して、サブスペース(部分空間)サブセット(部分集合)でベーススペース(空間)上でコンパクトであるものはサブスペース(部分空間)でコンパクトである
トランスファイナイト(超限)リカージョン(反復)定理に対して、フォーミュラの部分的指定で十分であるいくつかの条件
メンバーシップによるパーシャルオーダリング(部分的順序)を持つトランジティブセット(推移的集合)に対して、要素はそれへのイニシャルセグメントである
ベクトルたちバンドル(束)に対して、ベーススペース(空間)上のチャートオープンサブセット(開部分集合)は必ずしもトリビアライジングオープンサブセット(開部分集合)ではない(多分)
ベクトルたちバンドル(束)に対して、\(C^\infty\)フレームはトリビアライジングオープンサブセット(開部分集合)上方に、そしてその上方のみに存在する
ベクトルたちバンドル(束)に対して、トリビアライジングオープンサブセット(開部分集合)上方のセクション(断面)は\(C^\infty\)である、もしも、そこの上方の\(C^\infty\)フレームに関するコエフィシェント(係数)たちが\(C^\infty\)である場合、そしてその場合に限って
ベクトルたちバンドル(束)に対して、チャートトリビアライジングオープンカバー(開被覆)がある
ベクトルたちバンドル(束)に対して、チャートトリビアライジングオープンサブセット(開部分集合)のトリビアライゼイションは自然なチャートマップ(写像)をインデュース(誘導)する
ベクトルたちバンドル(束)に対して、トリビアライジングオープンサブセット(開部分集合)は必ずしもチャートオープンサブセット(開部分集合)ではないが、トリビアライジングオープンサブセット(開部分集合)上の任意のポイントにより小さいかもしれないチャートトリビアライジングオープンサブセット(開部分集合)がある
ウェルオーダード(整列)ストラクチャーおよびそのサブストラクチャーに対して、サブストラクチャーのオーディナル(順序)数はベースストラクチャーのオーディナル(順序)数のメンバーであるかオーディナル(順序)数である
セット(集合)の各要素をセット(集合)の中にユニークにマップするフォーミュラはファンクション(関数)を構成する
ユークリディアンノルム付き\(C^\infty\)マニフォールド(多様体)上のコンベックス(凸)オープンセット(開集合)でそのクロージャー(閉包)がバウンデッド(有界)であるものから同次元またはより高次元ユークリディアンノルム付き\(C^\infty\)マニフォールド(多様体)へのポリノミアル(多項式)マップ(写像)下の、メジャー(測度)0サブセット(部分集合)のイメージ(像)はメジャー(測度)0である
メジャー(測度)0サブセット(部分集合)の、ユークリディアンノルム付きトポロジカルスペース(空間)から同次元またはより高次元ユークリディアンノルム付きトポロジカルスペース(空間)へのリプシッツ条件を満たすマップ(写像)イメージ(像)はメジャー(測度)0である
自然数からカウンタブル(可算)セット(集合)へのファンクション(関数)たちセット(集合)はカウンタブル(可算)である
ファンクショナルに(関数により)ストラクチャード(構造化された)トポロジカルスペース(空間)たちカテゴリーモーフィズム(射)たちはモーフィズム(射)たちである
コンティニュアス(連続)マップ(写像)たちのコンポジション(合成)によってインデュースト(誘導された)ファンダメンタルグループ(群)ホモモーフィズム(準同形写像)はマップ(写像)たちにインデュースト(誘導された)ファンダメンタルグループ(群)ホモモーフィズム(準同形写像)たちのコンポジション(合成)である
ホメオモーフィズム(位相同形写像)によってインデュースト(誘導された)ファンダメンタルグループ(群)ホモモーフィズム(準同形写像)は'グループ(群)たち - グループ(群)ホモモーフィズム(準同形写像)たち'アイソモーフィズム(同形写像)である
ホモトピーイクイバレンス(等値写像)によってインデュースト(誘導された)ファンダメンタルグループ(群)ホモモーフィズム(準同形写像)は'グループ(群)たち - グループ(群)ホモモーフィズム(準同形写像)たち'アイソモーフィズム(同形写像)である
グループ(群)ホモモーフィズム(準同形写像)に対するファンダメンタル(基本的)定理
ユークリディアンノルム付きスペース(空間)間マップ(写像)のための微積分の基本定理
ハウスドルフマキシマル(最大)プリンシプル(律): パーシャリーオーダードセット(半順序集合)内のチェイン(鎖)はマキシマル(最大)チェイン(鎖)に包含されている
互いにホメオモーフィック(位相同形)なトポロジカルスペース(空間)たちは等価なアトラス(座標近傍系)たちを持てる
ウェッジプロダクト(楔積)の、テンソルアルジェブラ(テンソル代数)の要素たちのイクイバレンスクラス(同値類)とみたものは、当該テンソルプロダクト(テンソル積)構成体とどう関係しているか
アイデンティティ(恒等)マップ(写像)でドメイン(定義域)およびコドメイン(余域)が別のトポロジーたちを持っているものはコンティヌアス(連続)である、もしも、ドメイン(定義域)がコドメイン(余域)より密である場合、そしてその場合に限って
もしも、トポロジカルスペース(空間)間マップ(写像)下のクローズドセット(閉集合)のプリイメージ(前像)がクローズド(閉)である場合、マップ(写像)はコンティヌアス(連続)である
もしも、ディスジョイント(互いに素な)サブセット(部分集合)たちのユニオン(共通集合)がクローズド(閉)である場合、各サブセット(部分集合)は必ずしもクローズド(閉)ではない
もしも、ディスジョイント(互いに素な)サブセット(部分集合)たちのユニオン(共通集合)がオープン(開)である場合、各サブセット(部分集合)は必ずしもオープン(開)だとは限らない
コンパクトトポロジカルスペース(空間)から\(\mathbb{R}\)へのコンティヌアス(連続)マップ(写像)のイメージ(像)は最小および最大を持つ
トポロジカルスペース(空間)の中へのクローズドサブスペース(閉部分空間)からのインクルージョン(封入)はクローズド(閉)コンティニュアス(連続)エンベディング(埋め込み)である
トポロジカルスペース(空間)の中へのサブスペース(部分空間)からのインクルージョン(封入)はコンティニュアス(連続)である
コンティニュアス(連続)トポロジカルスペース(空間)たちマップ(写像)コドメイン(余域)上のインデュースト(誘引された)ファンクショナル(関数による)ストラクチャー(構造)はファンクショナル(関数による)ストラクチャー(構造)である
トポロジカルサブスペース(部分空間)上のインクルージョン(封入)によるインデュースト(誘引された)ファンクショナル(関数による)ストラクチャー(構造)はファンクショナル(関数による)ストラクチャー(構造)である
コンティヌアス(連続)マップ(写像)の、ドメイン(定義域)クオシィエント(商)からのインデュースト(誘導された)マップ(写像)はコンティヌアス(連続)である
トポロジカルスペース(空間)たち間のインジェクティブ(単射)マップ(写像)はコンティニュアス(連続)エンベディング(埋め込み)である、もしも、マップ(写像)の、オープンカバー(開被覆)の各要素についてのドメイン(定義域)リストリクション(制限)がレンジ(値域)またはコドメイン(余域)のオープンサブセット(開部分集合)上へのコンティニュアス(連続)エンベディング(埋め込み)である場合
集合たちのインターセクション(共通集合)のインジェクティブ(単射)マップ(写像)イメージ(像)は集合たちのマップ(写像)イメージ(像)たちのインターセクション(共通集合)である
\(C^\infty\)マニフォールド(多様体)の2つのトランスバーサル(横断)レギュラーサブマニフォールド(多様体)のインターセクション(共通集合)は特定コディメンジョン(余次元)のレギュラーサブマニフォールド(多様体)である
サブセット(部分集合)のクロージャー(閉包)とオープンサブセット(開部分集合)のインターセクション(共通集合)はサブセット(部分集合)とオープンサブセット(開部分集合)のインターセクション(共通集合)のクロージャー(閉包)の中に包含されている
サブセット(部分集合)たちのコンプリメント(補集合)たちのインターセクション(共通集合)はサブセット(部分集合)たちのユニオン(和集合)のコンプリメント(補集合)である
セット(集合)たちのプロダクトたちのインターセクション(共通集合)はセット(集合)たちのインターセクション(共通集合)たちのプロダクトである
トランシティブ(推移的)リレーション(関係)たちのセット(集合)のインターセクション(共通集合)はトランシティブ(推移的)である
クローズドセット(閉集合)たちのインターセクション(共通集合)または有限数ユニオン(和集合)はクローズド(閉)である
ユークリディアンノルム付きスペース(空間)間マップ(写像)のためのインバース(逆)定理
クローズド(閉)バイジェクション(全単射)のインバース(逆)はコンティニュアス(連続)である
パーシャルオーダリング(部分的順序)のインバース(逆)はパーシャルオーダリング(部分的順序)である
トポロジカルサブスペース(部分空間)たちのネストにおいて、サブスペース(部分空間)のコネクテッド(連結された)性はスーパースペース(空間)に依存しない
トポロジカルサブスペース(部分空間)たちのネストにおいて、サブスペース(部分空間)上のサブセット(部分集合)のオープン(開)性はスーパースペース(空間)に依存しない
ジェネラルリニア(線形)グループ(群)の恒等変換元におけるタンジェントスペース(空間)とジェネラルリニア(線形)リーアルジェブラ(多元環)との間のアイソモーフィズム(同型写像)
リーグループ(群)上の左インバリアント(不変)ベクトルフィールド(場)は\(C^\infty\)である
パスホモトピックパスたちのリフトたちで同一ポイントから開始するものたちはパスホモトピックである
リミット(極値)条件は等号付き条件で置き換えることが可能
有限次元ベクトルスペース(空間)のリニア(線形)イメージ(像)はベクトルスペース(空間)である
ユークリディアントポロジカルスペース(空間)たち間のリニア(線形)マップ(写像)はコンティニュアス(連続)である
有限次元ベクトルスペース(空間)から同一次元ベクトルスペース(空間)へのリニア(線形)サージェクション(全射)は'ベクトルスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィズム(同形写像)である
オープン(開)であることのローカル基準
クロージャー(閉包)のローカルキャラクタライゼーション: ポイントはサブセット(部分集合)のクロージャー(閉包)上にある、もしも、その全てのネイバーフッド(近傍)がサブセット(部分集合)と交わる場合、そしてその場合に限って
ユークリディアンノルム付きスペース(空間)ODEに対するローカル唯一解の存在
ローカルにコンパクトなハウスドルフトポロジカルスペース(空間)はパラコンパクトである、もしも、スペース(空間)はオープン(開)\(\sigma\)コンパクトサブスペース(部分空間)たちのディスジョイント(互いに素な)ユニオン(和集合)である場合、そしてその場合に限って
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)でバイジェクティブ(全単射)で各ポイントにおいてローカルにディフェオモーフィックであるものはディフェオモーフィズムである
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)でポイントにおいてローカルにディフェオモーフィックであるものはポイントにおいて\(C^\infty\)である
トポロジカルスペース(空間)たち間マップ(写像)はポイントにおいてコンティニュアス(連続)である、もしも、それらはC^\inftyマニフォールド(多様体)たちのサブスペース(部分空間)たちであり、ポイントおよびポイントイメージ(像)の周りにマニフォールド(多様体)たちのチャートたちおよびチャートオープンサブセット(部分集合)たち間マップ(写像)で元のマップ(写像)へリストリクテッド(制限される)なもので、そのリストリクテッド(制限された)コーディネート( 座標)たちファンクション(関数)がコンティニュアス(連続)であるものがある場合
トポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、ドメイン(定義域)の有限数クローズドカバー(閉被覆)の各クローズドセット(閉集合)への、マップ(写像)のドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合
トポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、ドメイン(定義域)のオープンカバー(開被覆)の各オープンセット(開集合)への、マップ(写像)のドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合
トポロジカルスペース(空間)間のマップ(写像)はコンティニュアス(連続)である、もしも、コドメイン(余域)の各クローズドサブセット(閉部分集合)のプリイメージ(前像)がクローズド(閉)である場合、そしてその場合に限って
マッピングシリンダー(円柱)からトポロジカルスペース(空間)の中へのマップ(写像)はコンティニュアス(連続)である、もしも、アジャンクション(付加)アタッチング元スペース(空間)からとアジャンクション(付加)アタッチング先スペース(空間)からのインデュースト(導出された)マップ(写像)たちがコンティニュアス(連続)である場合、そしてその場合に限って
セット(部分集合)たちのインターセクション(共通集合)のマップ(写像)イメージ(像)はセット(集合)たちのマップ(写像)イメージ(像)たちのインターセクション(共通集合)に包含されている
セット(集合)たちのインターセクション(共通集合)のマップ(写像)イメージ(像)は必ずしもセット(集合)たちのマップ(写像)イメージ(像)たちのインターセクション(共通集合)ではない
ポイントのマップ(写像)イメージ(像)はサブセット(部分集合)上にある、もしも、ポイントがサブセット(部分集合)のプリイメージ(前像)上にある場合、そしてその場合に限って
サブセット(部分集合)のマップ(写像)イメージ(像)はサブセット(部分集合)の中に含まれている、もしも、サブセット(部分集合)がサブセット(部分集合)のプリイメージ(前像)内に含まれている場合、そしてその場合に限って
セット(集合)たちのユニオン(和集合)のマップ(写像)イメージ(像)はセット(集合)たちのマップ(写像)イメージ(像)たちのユニオン(和集合)である
クオシエントトポロジーのマップ(写像)はクオシエントマップ(写像)である
セット(集合)たちのインターセクション(共通集合)のマップ(写像)プリイメージ(前像)はセット(集合)たちのマップ(写像)プリイメージ(前像)たちのインターセクション(共通集合)である
コドメイン(余域) マイナス セット(集合)のマップ(写像)プリイメージ(前像)はドメイン(定義域) マイナス セット(集合)のプリイメージ(前像)である
レンジ(値域)のマップ(写像)プリイメージ(前像)はドメイン(定義域)全体である
セット(集合)たちのユニオン(和集合)のマップ(写像)プリイメージ(前像)はセット(集合)たちのプリイメージ(前像)たちのユニオン(和集合)である
コドメイン(余域)全体のマップ(写像)プリイメージ(前像)はドメイン(定義域)全体である
ディスジョイント(互いに素な)サブセット(部分集合)たちのマップ(写像)プリイメージ(前像)たちはディスジョイント(互いに素)である
コネクテッド(連結された)トポロジカルスペース(空間)上でいたる所でローカルにコンスタントであるマップ(写像)はグローバルにコンスタントである
\(C^\infty\)マニフォールド(多様体)のオープンサブセット(開部分集合)からユークリディアン\(C^\infty\)マニフォールド(多様体)のオープンサブセット(開部分集合)の上へのマップ(写像)はチャートマップ(写像)である、もしも、それがディフェオモーフィズムである場合、そしてその場合に限って
マップ(写像)たちコンポジション(合成)プリイメージ(前像)はマップ(写像)プリイメージ(前像)たちの逆順でのコンポジション(合成)である
セット(集合)の、オーダリング(順序)のインバース(逆)に関する最大要素はセット(関数)の、元のオーダリング(順序)に関する最小要素である
メトリックスペース(計量付き空間)はコンパクトである、もしも、各インフィニット(無限)サブセット(部分集合)は\(\omega\)アキューミュレーションポイント(集積点)を持つ場合、そしてその場合に限って
セット(集合)の、オーダリング(順序)のインバース(逆)に関する最小要素はセット(関数)の、元のオーダリング(順序)に関する最大要素である
デデキントカット(切断)のマイナスデデキントカット(切断)は本当にデデキントカット(切断)である
同一サイズブロックたちから出来ているマトリックス(行列)のマルチプリカブル(積を取ることができる)同一サイズブロックたちから出来ているマトリックス(行列)によるマルチプリケーション(積)はブロックたち毎である
セット(集合)たちのカーディナリティたちの積たちはアソシアティブ(結合的)である
セット(集合)のカーディナリティ(濃度)の自然数乗はカーディナリティ(濃度)のその回数分の積である
プロダクトトポロジカルスペース(空間)へのネットはポイントへ収束する、もしも、ネット後の各プロジェクションがポイントのコンポーネントへ収束する場合、そしてその場合に限って
どの2セット(集合)たちもお互いをメンバーとして持つことはない
どのセット(集合)も自分自身をメンバーとして持たない
コンプレックス(複素)数たちユークリディアントポロジカルスペース(空間)からコンプレックス(複素)数たちユークリディアントポロジカルスペース(空間)の上への非ゼロマルチプリカティブ(乗法)トランスレーション(移動)はホメオモーフィズム(位相同形写像)である
セカンドカウンタブル(可算)トポロジカルスペース(空間)上で、オープンカバー(開被覆)はカウンタブル(可算)サブカバーを持つ
\(T_1\)トポロジカルスペース(空間)上にて、ポイントはサブセット(部分集合)の\(\omega\)アキューミュレーションポイント(集積点)である、もしも、それがサブセット(部分集合)のアキューミュレーションポイント(集積点)である場合、そしてその場合に限って
コンプリメントが有限であるオープンセット(開集合)たちと空集合を合わせたものはトポロジーである
メジャー(測度)0サブセット(部分集合)のオープンセット(開集合 コンプリメント(補集合)はデンス(密)である
オープンセット(開集合)はサブセット(部分集合)とインターセクトする(交わる)、もしも、それがサブセット(部分集合)のクロージャー(閉包)とインターセクト(交わる)場合
オープンセット(開集合)マイナスクローズドセット(閉集合)はオープン(開)である
ユークリディアントポロジカルスペース(空間)上のオープンセット(開集合)はラショナル(有理)ポイントを持つ
オープン(開)トポロジカルサブスペース(部分空間)上のオープンセット(開集合)はベーススペース(空間)上でオープン(開)である
ローカルにコンパクトなハウスドルフトポロジカルスペース(空間)のオープンサブスペース(開部分空間)はローカルにコンパクトである
累乗たちの順序
オーディナル(順序)数はグラウンデッドであり、そのランクはそれ自身である
オーディナル(順序)数はリミットオーディナル(順序)数である、もしも、それが非ゼロでその全メンバーたちのユニオン(和集合)である場合、そしてその場合に限って
コネクテッド(連結された)トポロジカルスペース(空間)のオープンセット(開集合)たちペアは有限数オープンセット(開集合)たちシーケンスコネクテッド(連結された)である
コネクテッド(連結された)トポロジカルスペース(空間)のオープンカバーの要素たちペアはカバー要素たちを介して有限数オープンセット(開集合)たちシーケンスコネクテッド(連結された)である
リーグループ(群)の\(C^\infty\)右アクションによって導出された、ベクトルたちのパラメータによるファミリーとカーブは、同一ベクトルを代表する、もしも、. . .
セット(集合)の部分はサブセット(部分集合)である、もしも、セット(集合)の各要素が部分の中にあるか外にあるかを決定するフォーミュラがある場合
パスコネクテッド(連結された)トポロジカルコンポーネントは、より大きくはできないパスコネクテッド(連結された)トポロジカルサブスペース(部分空間)に他ならない
パスコネクテッド(連結された)コンポーネントはローカルにパスコネクテッド(連結された)トポロジカルスペース(空間)上でオープン(開)かつクローズド(閉)である
ポイントはサブセット(部分集合)のマップ(写像)イメージ(像)上にある、もしも、ポイントのプリイメージ(前像)がサブセット(部分集合)内に含まれている場合、しかし、その場合に限ってではない
コネクテッド(連結された)リーグループ(群)上のポイントは、エクスポーネンシャル(指数)マップ(写像)の有限数積として表わすことができる
サージェクション(全射)下のプリイメージ(前像)はサージェクション(全射)に関してサチュレイテッド(飽和した)である
プロダクトマップ(写像)によるプリイメージ(前像)はコンポーネントマップ(写像)たちによるプリイメージ(前像)たちのプロダクトである
コンティヌアス(連続)ファンクション(関数)たちのマトリックス(行列)の非ゼロ デターミナント(行列式)たちのプリイメージ(前像)はオープンである
ドメイン(定義域)制限されたマップ(写像)下のプリイメージ(前像)は、元のマップ(写像)下のプリイメージ(前像)と制限されたドメイン(定義域)とのインターセクション(共通集合)である
コンティヌアス(連続)マップ(写像)たちのプロダクトマップ(写像)はコンティヌアス(連続)である
任意のコンプリメント(補集合)たちのプロダクトは、セット(集合)全体たちのプロダクトマイナス、セット(集合)全体たちのうちの1つがサブセット(部分集合)で置き換えられたもののプロダクトたちのユニオン(和集合)である
クローズドセット(閉集合)たちのプロダクトはプロダクトトポロジーにおいてクローズド(閉)である
コネクテッド(連結された)トポロジカルスペース(空間)たちのプロダクトはコネクテッド(連結された)である
有限数コネクテッド(連結された)トポロジカルスペース(空間)たちのプロダクトはコネクテッド(連結された)である
コネクテッド(連結された)トポロジカルスペース(空間)たちのプロダクトはパスコネクテッド(連結された)である
トポロジカルサブスペース(部分空間)たちのプロダクトはベーススペース(空間)たちのプロダクトのサブスペース(部分空間)である
セット(集合)たちのプロダクトたちは'セット(集合)たち - マップ(写像)モーフィズム(射)たち'アイソモーフィズム(同形写像)の意味でアソシアティブ(結合的)である
プロジェクティブ(射影)ハイパープレーン(超平面)はハウスドルフである
レギュラーサブマニフォールド(正規部分多様体)上のカーブに沿った\(C^\infty\)ベクトルたちフィールド(場)のスーパーマニフォールド(多様体)の中へのインクルージョン(封入)の下でのプッシュフォワードイメージ(像)は\(C^\infty\)である
コンパクトトポロジカルスペース(空間)のクウォシェント(商)スペース(空間)はコンパクトである
クオシエント(商)トポロジーはマップ(写像)をコンティヌアス(連続)にする唯一の最も密なトポロジーである
シリンダー(円柱)のクオシエント(商)でアンチポーダル(対心)ポイントたちを同定したものはメビウスバンド(帯)とホメオモーフィック(位相同形写像)である
リアル(実)またはコンプレックス(複素)ベクトルたちスペース(空間)上のインナープロダクト(内積)はノルムを誘導する
コーディネイト(座標)トポロジーたちを持つトポロジカルスペース(空間)たち間の'リアル(実)ベクトルスペース(空間)たち-リニア(線形)モーフィズム(射)たち'アイソモーフィズム(同形写像)はホメオモーフィック(位相同形写像)である
レギュラーサブマニフォールド(多様体)のレギュラーサブマニフォールド(多様体)はベース\(C^\infty\)マニフォールド(多様体)の、特定のコディメンジョン(余次元)のレギュラーサブマニフォールド(多様体)である
パワーセット(集合)公理とサブセット(部分集合)公理の間の関係
ノルム付きベクトルたちスペース(空間)たちマップ(写像)のデリバティブ(微分係数)のレシデュー(残余)は第2引数のポイントにおいてディファレンシャブル(微分可能)である、もしも、元のマップ(写像)が対応するポイントにおいてディファレンシャブル(微分可能)である場合、そしてデリバティブ(微分係数)は第1引数ポイントにおける元のマップ(写像)デリバティブ(微分係数)のマイナスプラス対応するポイントにおける元のマップ(写像)デリバティブ(微分係数)
\(C^\infty\)マップ(写像)のオープン(開)ドメイン(定義域)およびオープン(開)コドメイン(余域)についてのリストリクション(制限)は\(C^\infty\)である
\(C^\infty\)ベクトルたちバンドル(束)のレギュラーサブマニフォールド(多様体)ベーススペース(底空間)についてのリストリクション(制限)は\(C^\infty\)ベクトルたちバンドル(束)である
コンティヌアス(連続)エンベディング(埋め込み)のドメイン(定義域)およびコドメイン(余域)についてのリストリクション(制限)はコンティヌアス(連続)エンベディング(埋め込み)である
コンティヌアス(連続)マップ(写像)の、ドメイン(定義域)およびコドメイン(余域)についてのリストリクション(制限)はコンティヌアス(連続)である
トポロジカルスペース(空間)間プロパーマップ(写像)のサチュレイテッド(飽和した)ドメイン(定義域)サブセット(部分集合)およびレンジ(値域)コドメイン(余域)についてのリストリクション(制限)はプロパーである
ティーチェ拡張定理の逆
リーマニアンバンドル(束)はコンパチブル(互換)コネクション(接続)を持つ
\(n\)ディメンジョナル(次元)ユークリディアンベクトルたちスペース(空間)内のローテーション(回転)は\((n - 2)\)ディメンジョナル(次元)サブスペース(部分空間)アクシス(軸)に沿った同一の\(2\)ディメンジョナル(次元)ローテーション(回転)たちである
全ポイントたちにおけるネイバーフッド(近傍)ベーシス(基底)たちのセット(集合)はトポロジーを決定する
各ポイントの周りのサブセット(部分集合)たちのセット(集合)で諸条件を満たすものは、各セット(集合)がネイバーフッド(近傍)ベーシス(基底)になるユニークなトポロジーを生成する
サブセット(部分集合)たちのセット(集合)でセット(集合)全体と空集合を含むものはサブベーシス(基底)を構成する
ベクトルスペース(空間)ホモモーフィズム(準同形写像)たちのセット(集合)はベクトルスペース(空間)を構成する
n x nクォータニオン(4元数)マトリックス(行列)たちのセット(集合)は対応する2n x 2nコンプレックス(複素数)マトリックス(行列)たちのセット(集合)へ'リング(環)たち - ホモモーフィズム(準同形写像)モーフィズム(射)たち'アイソモーフィック(同形写像)である
シンプレックス(単体)は同次元クローズドボール(閉球)にホメオモーフィック(位相同形)である
2次元より高いかもしれないマトリックスをインデックスたちペアについてシンメトリック(対称)なパートとアンチシンメトリック(反対称的)なパートに分割することについてのいくつかの事実たち
コンティヌアスマップ(写像)たちのいくつかの疑似プロダクトマップ(写像)はコンティヌアス(連続)である
ZFCセット(集合)理論のための妥当なフォーミュラたちのいくつかのパーツたち
アジャンクション(付加)トポロジカルスペース(空間)についてのいくつかのプロパティたち、アタッチング元スペース(空間)へのサブセット(部分空間)からのインクルージョン(封入)がクローズド(閉)エンベディング(埋蔵)である時
\(\mathbb{R}^n\)ベクトルのユークリディアンノルムの2乗は、ポジティブデフィニット(正定値)リアル(実)クオドラティック(2次)フォーム(形式)を最大アイゲンバリュー(固有値)で割ったものに等しいかより大きい
\(\mathbb{R}^n\)ベクトルのユークリディアンノルムの2乗は、ポジティブデフィニット(正定値)リアル(実)クオドラティック(2次)フォーム(形式)を最小アイゲンバリュー(固有値)で割ったものに等しいかより小さい
ステレオグラフィックプロジェクションはホメオモーフィズム(位相同形写像)である
アーベリアン加法グループ(群)のサブグループ(群)はグループ(群)のリトラクトである、もしも、別のサブグループ(群)がありグループがサブグループ(群)たちの和である場合、そしてその場合に限って
サブセット(部分集合)はサブセット(部分集合)のマップ(写像)イメージ(像)のプリイメージ(前像)に包含される
サブセット(部分集合)マイナスサブセット(部分集合)は第2サブセット(部分集合)のコンプリメント(補集合)マイナス第1サブセット(部分集合)のコンプリメント(補集合)である
サブセット(部分集合)マイナスサブセット(部分集合)たちのシーケンス(列)のユニオン(和集合)は、それぞれが第1サブセット(部分集合)マイナスシーケンス(列)の部分的ユニオン(和集合)であるサブセット(部分集合)たちのインターセクション(共通集合)である
ファースト(第1)カテゴリーサブセット(部分集合)のサブセット(部分集合)はファースト(第1)カテゴリーのものである
非オープン(開)トポロジカルサブスペース(部分空間)のサブセット(部分集合)はサブスペース(部分空間)上でオープン(開)である、もしも、それがベーススペース(空間)上でオープン(開)である場合
オープン(開)トポロジカルサブスペース(空間)のサブセット(部分集合)はサブスペース(部分空間)上でオープン(開)である、もしも、それがベーススペース(空間)上でオープン(開)である場合、そしてその場合に限って
プロダクトトポロジカルスペース(空間)のサブセット(部分集合)はクローズド(閉)である、もしも、それがクローズドサブセット(部分集合)たちでその内の有限個のみがスペース(空間)全体でないもののプロダクトたちの有限ユニオン(和集合)たちのインターセクション(共通集合)である場合、そしてその場合に限って
クオシエントトポロジースペース(空間)のサブセット(部分集合)はクローズド(閉)である、もしも、サブセット(部分集合)のクオシエントマップ(写像)下のプリイメージ(前像)がクローズド(閉)である場合、そしてその場合に限って
\(R^{d-k}\)のサブセット(部分集合)は、もしも、\(R^k\)とサブセット(部分集合)のプロダクト(積)がオープンであれば、オープンである
アジャンクション(付加)トポロジカルスペース(空間)のサブスペース(部分空間)のサブセット(部分集合)はオープンである、もしも、サブセット(部分集合)のプリイメージ(前像)のプロジェクション(射影)たちが条件を満たしてオープンである場合、そしてその場合に限って
トポロジカルサブスペース(部分空間)上のサブセット(部分集合)はクローズド(閉)である、もしも、ベーススペース(空間)上のクローズドセット(閉集合)であってそれのサブスペース(部分空間)とのインターセクション(共通集合)がサブセット(部分集合)であるものがある場合、そして、その場合に限って
コネクテッド(連結された)サブスペース(部分空間)を包含しコネクテッド(連結された)サブスペース(部分空間)のクロージャー(閉包)に包含されているサブスペース(部分空間)はコネクテッド(連結された)である
セカンドカウンタブル(可算)トポロジカルスペース(空間)のサブスペース(部分空間)はセカンドカウンタブル(可算)である
ユークリディアンノルム付きユークリディアンベクトルたちスペース(空間)ODEに対するインターバル(区間)上のユニークなグローバル解の存在に対する十分条件たち
レシデュアル(残余)サブセット(部分集合)のスーパーセット(集合)はレシデュアル(残余)である
2つのデデキントカットたちの間にラショナル(有理)およびイラショナル(無理)デデキントカットたちがある
全てのセット(集合)たちを包含するセット(集合)はない
2ポイントたちのトポロジカルコネクテッド性はイクイバレンス(同値)リレーション(関係)である
2ポイントたちのトポロジカルパスコネクテッド(連結された)性はイクイバレンスリレーション(等価関係)である
トポロジカルスペース(空間)はコンパクトである、もしも、クローズドセット(閉集合)たちのコレクションで任意の有限数メンバーたちのインターセクション(共通集合)が空でないどんなものに対しても、コレクションのインターセクション(共通集合)が空でない場合、そしてその場合に限って
トポロジカルスペース(空間)はコネクテッド(連結された)である、もしも、クウォシェント(商)スペース(空間)およびクウォシェント(商)スペース(空間)の各要素がコネクテッド(連結された)である場合
トポロジカルスペース(空間)はコネクテッド(連結された)である、もしも、そのオープン(開)かつクローズド(閉)サブセット(部分集合)たちはそれと空集合だけである場合、そしてその場合に限って
トポロジカルスペース(空間)はカウンタブリー(可算に)コンパクトである、もしも、それがシーケンシャリー(シーケンス的に)コンパクトである場合
トポロジカルスペース(空間)はカウンタブリー(可算に)コンパクトである、もしも、各インフィニット(無限)サブセット(部分集合)が\(\omega\)アキューミュレーションポイント(集積点)を持っている場合、そしてその場合に限って
トポロジカルスペース(空間)はノーマル(正規)である、もしも、クローズドセット(閉集合)およびそれを包含オープンセット(開集合)に対して、クローズドセット(閉集合)を包含するオープンセット(開集合)(その〜)がある場合、そしてその場合に限って
トポロジカルサブスペース(部分空間)はローカルにクローズド(閉)である、もしも、それがベーススペース(空間)のクローズドサブセット(閉部分集合)とオープンサブセット(開部分集合)のインターセクション(共通集合)である場合、そして、その場合に限って
トポロジカルサブスペース(部分空間)間マップ(写像)の、ポイントにおけるコンティヌアス(連続)性は、マップ(写像)の、スーパースペースたちのオープンセット(開集合)たちへの拡張のコンティヌアス(連続)性から帰結される
パラコンパクトトポロジカルスペース(空間)たちのトポロジカルサムはパラコンパクトである
サブセット(部分集合)のトランジティブ(推移的)クロージャー(閉包)はサブセット(部分集合)を包含するトランジティブ(推移的)セット(集合)である
オーディナル(順序)数たちのアンバウンデッドな(範囲限定されていない)コレクションはセット(集合)ではない
2つのコネクテッド(連結された)サブスペース(部分空間)たちのユニオン(和集合)はコネクテッド(連結された)である、もしも、サブスペース(部分空間)上のポイントの各ネイバーフッド(近傍)が他のサブスペース(部分空間)のポイントを包含する場合
サブセット(部分集合)たちのコンプリメント(補集合)たちのユニオン(和集合)はサブセット(部分集合)たちのインターセクション(共通集合)のコンプリメント(補集合)である
ダイコトミカリー(2分割的に)非ディスジョイント(互いに素)リアル(実)インターバル(区間)たちセット(集合)のユニオン(和集合)はリアル(実)インターバル(区間)である
インデックス付けられたサブセット(部分集合)たちのユニオン(和集合)マイナス同じインデックスたちセット(集合)でインデックス付けられたサブセット(部分集合)たちのユニオン(和集合)は各インデックスに対するサブセット(部分集合)マイナスサブセット(部分集合)のユニオン(和集合)に包含されている
パスコネクテッド(連結された)サブスペース(部分空間)たちのユニオン(和集合)パスコネクテッド(連結された)である、もしも、各サブスペース(部分空間)からポイントを抽出したサブスペース(部分空間)がパスコネクテッド(連結された)である場合
モノイドアイデンティティ要素の唯一存在
コンティヌアス(連続)エンベディング(埋め込み)のユニバーサルプロパティ
クウォシェント(商)マップ(写像)のユニバーサルプロパティ
\(C^\infty\)カーブに沿ったベクトルたちフィールド(場)は\(C^\infty\)である、もしも、任意の\(C^\infty\)ファンクション(関数)へのオペレーション結果が\(C^\infty\)である場合、そしてその場合に限って
ベクトルたちフィールド(場)は\(C^\infty\)である、もしも、任意の\(C^\infty\)ファンクション(関数)へのオペレーション結果が\(C^\infty\)である場合、そしてその場合に限って
リストリクテッド(制限された)タンジェントベクトルたちバンドル(束)上のベクトルたちフィールド(場)は\(C^\infty\)である、もしも、スーパーマニフォールド(多様体)上の任意の\(C^\infty\)ファンクション(関数)へのオペレーション結果がレギュラーサブマニフォールド(正規部分多様体)上で\(C^\infty\)である場合、そしてその場合に限って、という命題
\(C^\infty\)カーブに沿ったベロシティーベクトルたちフィールド(場)は\(C^\infty\)である
ウェルオーダード(整列集合)サブセット(部分集合)にインクルージョン(包含)オーダリング(順序)を付けたものはベースセット(集合)内のチェイン(鎖)である
バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)上のチャートインデュースト(誘導された)ベーシス(基底)ベクトルとは何であるか
カーブのクローズドバウンダリーポイント(閉境界点)におけるベロシティーとは何であるか
リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれないセット(集合)によってスパンされる(張られる)コンベックスセット(集合)がアファインシンプレックス(単体)である時、それはベースポイントたちのアファインインディペンデント(独立)なサブセット(部分集合)によってスパンされる(張られる)
ポイントのイメージ(像)がサブセット(部分集合)のイメージ(像)上にあるとき、ポイントはサブセット(部分集合)上にある、もしも、マップ(写像)がサブセット(部分集合)のイメージ(像)に関してインジェクティブ(単射)である場合
なぜ、ユークリディアンノルム付きスペース(空間)ODEに対してローカル解の存在がグローバルな存在を保証しないか
ノーマル(正規)サブグループ(部分群)に関して、コセット(剰余類)たちのセット(集合)はグループ(群)を形成する
サブグループ(部分群)に関して、グループ(群)の要素によるコセット(剰余類)はコセット(剰余類)に等しい、もしも、要素が後者コセット(剰余類)のメンバーである場合、そしてその場合に限って
n次元クォータニオン(4元数)ジェネラルリニア(線形)グループ(群)は、非ゼロデターミナント(行列式)対応する2n x 2nコンプレックス(複素数)マトリックス(行列)たちのセット(集合)へ'グループ(群)たち - ホモモーフィズム(準同形写像)モーフィズム(射)たち'アイソモーフィック(同形写像)であり、後者によって代表することができる
nスフィア(球)はパスコネクテッド(連結された)である


参考資料


<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>