ラベル 定義たちと命題たち の投稿を表示しています。 すべての投稿を表示
ラベル 定義たちと命題たち の投稿を表示しています。 すべての投稿を表示

2025年11月23日日曜日

1458: \(1\)より大きいリアルナンバー(実数)\(p\)、そのエクスポーネントコンジュゲート(指数共役)\(q\)、非負リアルナンバー(実数)たち\(r_1\)および\(r_2\)に対して、\(r_1 r_2\)は\({r_1}^p / p\)プラス\({r_2}^q / q\)に等しいかそれより小さい

<このシリーズの前の記事 | このシリーズの目次 |

\(1\)より大きいリアルナンバー(実数)\(p\)、そのエクスポーネントコンジュゲート(指数共役)\(q\)、非負リアルナンバー(実数)たち\(r_1\)および\(r_2\)に対して、\(r_1 r_2\)は\({r_1}^p / p\)プラス\({r_2}^q / q\)に等しいかそれより小さいことの記述/証明

話題


About: セット(集合)

この記事の目次

1457: エクスポーネント(指数)のエクスポーネントコンジュゲート(指数共役)

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

エクスポーネント(指数)のエクスポーネントコンジュゲート(指数共役)の定義

話題


About: セット(集合)

この記事の目次

1456: メジャラブルスペース(測定可能空間)から\(1\)-ディメンショナル(次元)コンプレックス(複素)ユークリディアントポロジカルスペース(空間)でボレル\(\sigma\)-アルジェブラ(多元環)を持つもの中へのマップ(写像)に対して、もしも、マップ(写像)がメジャラブル(測定可能)である場合、そしてその場合に限って、リアル(実)およびイマジナリー(虚)パートたちマップ(写像)たちはメジャラブル(測定可能)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メジャラブルスペース(測定可能空間)から\(1\)-ディメンショナル(次元)コンプレックス(複素)ユークリディアントポロジカルスペース(空間)でボレル\(\sigma\)-アルジェブラ(多元環)を持つもの中へのマップ(写像)に対して、もしも、マップ(写像)がメジャラブル(測定可能)である場合、そしてその場合に限って、リアル(実)およびイマジナリー(虚)パートたちマップ(写像)たちはメジャラブル(測定可能)であることの記述/証明

話題


About: メジャラブルスペース(測定可能空間)

この記事の目次

1455: メジャラブルマップ(測定可能写像)たちのいくつかの疑似プロダクトマップ(写像)たちはメジャラブル(測定可能)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メジャラブルマップ(測定可能写像)たちのいくつかの疑似プロダクトマップ(写像)たちはメジャラブル(測定可能)であることの記述/証明

話題


About: メジャラブルスペース(測定可能空間)

この記事の目次

1454: \(\sigma\)-アルジェブラ(多元環)たちのファイナイト(有限)-プロダクトはアソシアティブ(結合的)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

\(\sigma\)-アルジェブラ(多元環)たちのファイナイト(有限)-プロダクトはアソシアティブ(結合的)であることの記述/証明

話題


About: メジャラブルスペース(測定可能空間)

この記事の目次

1453: セット(集合)上の\(d\)-システム

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

セット(集合)上の\(d\)-システムの定義

話題


About: セット(集合)

この記事の目次

1452: セット(集合)上の\(\pi\)-システム

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

セット(集合)上の\(\pi\)-システムの定義

話題


About: セット(集合)

この記事の目次

1451: プロダクトセット(集合)に対して、プロダクトサブセット(部分集合)でそのコンポーネントたちの一つがサブセット(部分集合)たちのユニオン(和集合)であるものは、プロダクトサブセット(部分集合)たちでそれらの対応するコンポーネントたちがサブセット(部分集合)たちであるものたちのユニオン(和集合)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

プロダクトセット(集合)に対して、プロダクトサブセット(部分集合)でそのコンポーネントたちの一つがサブセット(部分集合)たちのユニオン(和集合)であるものは、プロダクトサブセット(部分集合)たちでそれらの対応するコンポーネントたちがサブセット(部分集合)たちであるものたちのユニオン(和集合)であることの記述/集合

話題


About: セット(集合)

この記事の目次

1450: プロダクトセット(集合)に対して、プロダクトサブセット(部分集合)でそのコンポーネントたちの一つが\(2\)サブセット(部分集合)たちの差であるものは、プロダクトサブセット(部分集合)たちでそれらの対応するコンポーネントたちが第1サブセット(部分集合)および第2サブセット(部分集合)であるものたちの差である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

プロダクトセット(集合)に対して、プロダクトサブセット(部分集合)でそのコンポーネントたちの一つが\(2\)サブセット(部分集合)たちの差であるものは、プロダクトサブセット(部分集合)たちでそれらの対応するコンポーネントたちが第1サブセット(部分集合)および第2サブセット(部分集合)であるものたちの差であることの記述/証明

話題


About: セット(集合)

この記事の目次

1449: 同一ドメイン(定義域)からのマップ(写像)たちおよび同一ドメイン(定義域)からのプロダクトセット(集合)の中へのマップ(写像)でイメージ(像)がイメージ(像)たちのプロダクトであるものに対して、サブセット(部分集合)たちのプロダクトのプリイメージ(前像)はサブセット(部分集合)たちのプリイメージ(前像)たちのインターセクション(共通集合)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

同一ドメイン(定義域)からのマップ(写像)たちおよび同一ドメイン(定義域)からのプロダクトセット(集合)の中へのマップ(写像)でイメージ(像)がイメージ(像)たちのプロダクトであるものに対して、サブセット(部分集合)たちのプロダクトのプリイメージ(前像)はサブセット(部分集合)たちのプリイメージ(前像)たちのインターセクション(共通集合)であることの記述/証明

話題


About: セット(集合)

この記事の目次

1448: プロダクトセット(集合)に対して、構成要素セット(集合)たちのサブセット(部分集合)たちのプロジェクション(射影)プリイメージ(前像)たちのインターセクション(共通集合)はサブセット(部分集合)たちのインターセクション(共通集合)たちのプロダクトである

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

プロダクトセット(集合)に対して、構成要素セット(集合)たちのサブセット(部分集合)たちのプロジェクション(射影)プリイメージ(前像)たちのインターセクション(共通集合)はサブセット(部分集合)たちのインターセクション(共通集合)たちのプロダクトであることの記述/証明

話題


About: セット(集合)

この記事の目次

1447: メジャラブルマップ(測定可能写像)たちのファイナイト(有限)-プロダクトマップ(写像)はメジャラブル(測定可能)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メジャラブルマップ(測定可能写像)たちのファイナイト(有限)-プロダクトマップ(写像)はメジャラブル(測定可能)であることの記述/証明

話題


About: メジャラブルマップ(測定可能写像)

この記事の目次

1446: \(d\)-ディメンショナル(次元)ユークリディアントポロジカルスペース(空間)のボレル\(\sigma\)-アルジェブラ(多元環)は、\(1\)-ディメンショナル(次元)ユークリディアントポロジカルスペース(空間)のボレル\(\sigma\)-アルジェブラ(多元環)たちのプロダクト\(\sigma\)-アルジェブラ(多元環)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

\(d\)-ディメンショナル(次元)ユークリディアントポロジカルスペース(空間)のボレル\(\sigma\)-アルジェブラ(多元環)は、\(1\)-ディメンショナル(次元)ユークリディアントポロジカルスペース(空間)のボレル\(\sigma\)-アルジェブラ(多元環)たちのプロダクト\(\sigma\)-アルジェブラ(多元環)であることの記述/証明

話題


About: メジャラブルスペース(測定可能空間)

この記事の目次

1445: プロダクトメジャラブルスペース(測定可能空間)

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

プロダクトメジャラブルスペース(測定可能空間)の定義

話題


About: メジャラブルスペース(測定可能空間)

この記事の目次

1444: プロダクト\(\sigma\)-アルジェブラ(多元環)

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

プロダクト\(\sigma\)-アルジェブラ(多元環)の定義 

話題


About: メジャラブルスペース(測定可能空間)

この記事の目次

1443: プロダクトセット(集合)のプロダクトサブセット(部分集合)は、プロダクトサブセット(部分集合)たちでそれらの各々はコンポーネントサブセット(部分集合)および他の全体セット(集合)たちを取るものであるものたちのインターセクション(共通集合)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

プロダクトセット(集合)のプロダクトサブセット(部分集合)は、プロダクトサブセット(部分集合)たちでそれらの各々はコンポーネントサブセット(部分集合)および他の全体セット(集合)たちを取るものであるものたちのインターセクション(共通集合)であることの記述/証明

話題


About: セット(集合)

この記事の目次

2025年11月16日日曜日

1442: メジャースペース(測度空間)に対して、スペース(空間)のローカルにネグリジブルサブセット(無視可能部分集合)のサブセット(部分集合)はローカルにネグリジブル(無視可能)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メジャースペース(測度空間)に対して、スペース(空間)のローカルにネグリジブルサブセット(無視可能部分集合)のサブセット(部分集合)はローカルにネグリジブル(無視可能)であることの記述/証明

話題


About: メジャースペース(測度空間)

この記事の目次

1441: メジャースペース(測度空間)およびメジャラブルサブセット(測定可能部分集合)に対するメジャーサブスペース(測度部分空間)に対して、サブスペース(部分空間)のローカルにネグリジブルサブセット(無視可能部分集合)はスペース(空間)上でローカルにネグリジブル(無視可能)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メジャースペース(測度空間)およびメジャラブルサブセット(測定可能部分集合)に対するメジャーサブスペース(測度部分空間)に対して、サブスペース(部分空間)のローカルにネグリジブルサブセット(無視可能部分集合)はスペース(空間)上でローカルにネグリジブル(無視可能)であることの記述/証明

話題


About: メジャースペース(測度空間)

この記事の目次

1440: メジャースペース(測度空間)およびメジャラブルサブセット(測定可能部分集合)に対するメジャーサブスペース(測度部分空間)に対して、スペース(空間)のローカルにネグリジブルサブセット(無視可能部分集合)とサブスペース(部分空間)のインターセクション(共通集合)はサブスペース(部分空間)上でローカルにネグリジブル(無視可能)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メジャースペース(測度空間)およびメジャラブルサブセット(測定可能部分集合)に対するメジャーサブスペース(測度部分空間)に対して、スペース(空間)のローカルにネグリジブルサブセット(無視可能部分集合)とサブスペース(部分空間)のインターセクション(共通集合)はサブスペース(部分空間)上でローカルにネグリジブル(無視可能)であることの記述/証明

話題


About: メジャースペース(測度空間)

この記事の目次

1439: メジャースペース(測度空間)のメジャラブルサブセット(測度空間部分集合)に対するメジャーサブスペース(測度部分空間)

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メジャースペース(測度空間)のメジャラブルサブセット(測度空間部分集合)に対するメジャーサブスペース(測度部分空間)の定義

話題


About: メジャースペース(測度空間)

この記事の目次