ラベル 定義たちと命題たち の投稿を表示しています。 すべての投稿を表示
ラベル 定義たちと命題たち の投稿を表示しています。 すべての投稿を表示

2025年3月30日日曜日

1061: ヒルベルトスペース(空間)、非空クローズド(閉)コンベックス(凸)サブセット(部分集合)、ヒルベルトスペース(空間)上のポイントに対して、サブセット(部分集合)上のユニークなポイントでポイントへのディスタンス(距離)が最小であるものがある

<このシリーズの前の記事 | このシリーズの目次 |

ヒルベルトスペース(空間)、非空クローズド(閉)コンベックス(凸)サブセット(部分集合)、ヒルベルトスペース(空間)上のポイントに対して、サブセット(部分集合)上のユニークなポイントでポイントへのディスタンス(距離)が最小であるものがあることの記述/証明

話題


About: ベクトルたちスペース(空間)
About: トポロジカルスペース(空間)

この記事の目次

1060: コンティニュアス(連続)マップ(写像)およびダイレクテッド(有向)インデックスセット(集合)によるネットでドメイン(定義域)上のポイントへコンバージ(収束)するものに対して、ネットのイメージ(像)はポイントのイメージ(像)へコンバージ(収束)し、もしも、コドメイン(余域)がハウスドルフである場合、ネットのイメージ(像)のコンバージェンス(収束ポイント)はポイントのイメージ(像)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

コンティニュアス(連続)マップ(写像)およびダイレクテッド(有向)インデックスセット(集合)によるネットでドメイン(定義域)上のポイントへコンバージ(収束)するものに対して、ネットのイメージ(像)はポイントのイメージ(像)へコンバージ(収束)し、もしも、コドメイン(余域)がハウスドルフである場合、ネットのイメージ(像)のコンバージェンス(収束ポイント)はポイントのイメージ(像)であることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

1059: メトリック(計量)はコンティニュアス(連続)である、メトリック(計量)によってインデュースト(誘導された)トポロジーに関して

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メトリック(計量)はコンティニュアス(連続)である、メトリック(計量)によってインデュースト(誘導された)トポロジーに関して、という命題の記述および証明を得る。

話題


About: メトリックスペース(計量付き空間)

この記事の目次

1058: ベクトルたちスペース(空間)でインナープロダクト(内積)によってインデュースト(誘導された)ノルム付きのもの上のパラレログラム(平行四辺形)法則

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

ベクトルたちスペース(空間)でインナープロダクト(内積)によってインデュースト(誘導された)ノルム付きのもの上のパラレログラム(平行四辺形)法則の記述/証明

話題


About: ベクトルたちスペース(空間)

この記事の目次

1057: メトリック(計量)によってインデュースト(誘導された)トポロジカルスペース(空間)はハウスドルフである

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

メトリック(計量)によってインデュースト(誘導された)トポロジカルスペース(空間)はハウスドルフであることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

1056: テンソルたちのテンソルプロダクトのリアル(実)パラメータによるデリベイションはライプニッツルールを満たす

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

テンソルたちのテンソルプロダクトのリアル(実)パラメータによるデリベイションはライプニッツルールを満たすことの記述/証明

話題


About: ベクトルたちスペース(空間)

この記事の目次

1055: ファイナイト(有限)-プロダクト\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、およびタンジェント(接)ベクトルたちスペース(空間)からタンジェント(接)ベクトルたちスペース(空間)たちのダイレクトサムの上への'ベクトルたちスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィズム(同形写像)に対して、タンジェント(接)ベクトルはファンクション(関数)に、ベクトルたちがプロジェクテッド(射影された)ファンクション(関数)たちへオペレート(作用)したものたちのサム(合計)としてオペレート(作用)する

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

ファイナイト(有限)-プロダクト\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、およびタンジェント(接)ベクトルたちスペース(空間)からタンジェント(接)ベクトルたちスペース(空間)たちのダイレクトサムの上への'ベクトルたちスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィズム(同形写像)に対して、タンジェント(接)ベクトルはファンクション(関数)に、ベクトルたちがプロジェクテッド(射影された)ファンクション(関数)たちへオペレート(作用)したものたちのサム(合計)としてオペレート(作用)することの記述/証明

話題


About: \(C^\infty\)マニフォールド(多様体)

この記事の目次

1054: ファイナイト(有限)-プロダクト\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、からの\(C^\infty\)マップ(写像)からプロジェクテッド(射影された)\(C^\infty\)マップ(写像)、ポイントに基づいて\(j\)-番目を除きドメイン(定義域)コンポーネントたちを固定することによって

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

ファイナイト(有限)-プロダクト\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、からの\(C^\infty\)マップ(写像)からプロジェクテッド(射影された)\(C^\infty\)マップ(写像)、ポイントに基づいて\(j\)-番目を除きドメイン(定義域)コンポーネントたちを固定することによって、の定義

話題


About: \(C^\infty\)マニフォールド(多様体)

この記事の目次

1053: ファイナイト(有限)-プロダクト\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、からの\(C^\infty\)マップ(写像)からインデュースト(誘導された)\(C^\infty\)マップ(写像)、ポイントに基づいていくつかのドメイン(定義域)コンポーネントたちを固定することによって

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

ファイナイト(有限)-プロダクト\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、からの\(C^\infty\)マップ(写像)からインデュースト(誘導された)\(C^\infty\)マップ(写像)、ポイントに基づいていくつかのドメイン(定義域)コンポーネントたちを固定することによって、の定義

話題


About: \(C^\infty\)マニフォールド(多様体)

この記事の目次

1052: トポロジカルスペース(空間)たち間のコンティニュアス(連続)マップ(写像)およびドメイン(定義域)のサブセット(部分集合)でコドメイン(余域)のオープンサブセット(開部分集合)の中へマップされるものに対して、ドメイン(定義域)サブセット(部分集合)のオープンネイバーフッド(開近傍)でオープンサブセット(開部分集合)の中へマップされるものがある

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルスペース(空間)たち間のコンティニュアス(連続)マップ(写像)およびドメイン(定義域)のサブセット(部分集合)でコドメイン(余域)のオープンサブセット(開部分集合)の中へマップされるものに対して、ドメイン(定義域)サブセット(部分集合)のオープンネイバーフッド(開近傍)でオープンサブセット(開部分集合)の中へマップされるものがあることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

1051: トポロジカルスペース(空間)マイナス任意のポイントからファイナイト(有限)-ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)でカノニカル(正典)トポロジーを持つものの中へのマップ(写像)に対して、マップ(写像)の、ポイントに関するコンバージェンス(収束ポイント)は存在する、もしも、コンスタントベクトルたちに関するコエフィシェント(係数)たちのポイントに関するコンバージェンス(収束ポイント)たちが存在する場合、その場合、コンバージェンス(収束ポイント)はコンバージェンス(収束ポイント)たちで表わされる

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルスペース(空間)マイナス任意のポイントからファイナイト(有限)-ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)でカノニカル(正典)トポロジーを持つものの中へのマップ(写像)に対して、マップ(写像)の、ポイントに関するコンバージェンス(収束ポイント)は存在する、もしも、コンスタントベクトルたちに関するコエフィシェント(係数)たちのポイントに関するコンバージェンス(収束ポイント)たちが存在する場合、その場合、コンバージェンス(収束ポイント)はコンバージェンス(収束ポイント)たちで表わされることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

1050: トポロジカルスペース(空間)マイナス任意のポイントからファイナイト(有限)-ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)でカノニカル(正典)トポロジーを持つものの中へのマップ(写像)に対して、マップ(写像)の、ポイントに関するコンバージェンス(収束ポイント)は存在する、もしも、コンポーネントマップ(写像)たちのポイントに関するコンバージェンス(収束ポイント)たちが存在する場合、そしてその場合に限って、そして、その場合、コンバージェンス(収束ポイント)はコンバージェンス(収束ポイント)たちで表わされる

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルスペース(空間)マイナス任意のポイントからファイナイト(有限)-ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)でカノニカル(正典)トポロジーを持つものの中へのマップ(写像)に対して、マップ(写像)の、ポイントに関するコンバージェンス(収束ポイント)は存在する、もしも、コンポーネントマップ(写像)たちのポイントに関するコンバージェンス(収束ポイント)たちが存在する場合、そしてその場合に限って、そして、その場合、コンバージェンス(収束ポイント)はコンバージェンス(収束ポイント)たちで表わされることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

1049: トポロジカルスペース(空間)マイナスポイントからトポロジカルスペース(空間)の中へのマップ(写像)のポイントに関するコンバージェンス(収束ポイント)

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルスペース(空間)マイナスポイントからトポロジカルスペース(空間)の中へのマップ(写像)のポイントに関するコンバージェンス(収束ポイント)の定義

話題


About: トポロジカルスペース(空間)

この記事の目次

2025年3月23日日曜日

1048: リアル(実)またはコンプレックス(複素)ベクトルたちスペース(空間)でインナープロダクト(内積)によってインデュースト(誘導された)ノルムによってインデュースト(誘導された)メトリック(計量)によってインデュースト(誘導された)トポロジーを持つものに対して、1個の引数を固定したインナープロダクト(内積)はコンティニュアス(連続)マップ(写像)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

リアル(実)またはコンプレックス(複素)ベクトルたちスペース(空間)でインナープロダクト(内積)によってインデュースト(誘導された)ノルムによってインデュースト(誘導された)メトリック(計量)によってインデュースト(誘導された)トポロジーを持つものに対して、1個の引数を固定したインナープロダクト(内積)はコンティニュアス(連続)マップ(写像)であることの記述/証明

話題


About: ベクトルたちスペース(空間)
About: トポロジカルスペース(空間)

この記事の目次

1047: ヒルベルトスペース(空間)

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

ヒルベルトスペース(空間)の定義

話題


About: メトリックスペース(計量付き空間)

この記事の目次

1046: \(C^\infty\)マニフォールド(多様体)、レギュラードメイン、インクルージョン(封入)、2個の\(C^\infty\)ベクトルたちフィールド(場)たちに対して、ベクトルたちフィールド(場)たちのリーブラケット(コミューテイター)はプシュフォワードされエクステンデッド(拡張された)ベクトルたちフィールド(場)たちのリーブラケット(コミューテイター)をプルバックしたものである

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

\(C^\infty\)マニフォールド(多様体)、レギュラードメイン、インクルージョン(封入)、2個の\(C^\infty\)ベクトルたちフィールド(場)たちに対して、ベクトルたちフィールド(場)たちのリーブラケット(コミューテイター)はプシュフォワードされエクステンデッド(拡張された)ベクトルたちフィールド(場)たちのリーブラケット(コミューテイター)をプルバックしたものであることの記述/証明

話題


About: \(C^\infty\)マニフォールド(多様体)

この記事の目次

1045: フィールド(体)、フィールド(体)上方の\(k\)個のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちおよびフィールド(体)に関するテンソルたちスペース(空間)は\(k\)個のコベクトルたちスペース(空間)たちのテンソルプロダクト(積)へ'ベクトルたちスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィック(同形写像)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

フィールド(体)、フィールド(体)上方の\(k\)個のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちおよびフィールド(体)に関するテンソルたちスペース(空間)は\(k\)個のコベクトルたちスペース(空間)たちのテンソルプロダクト(積)へ'ベクトルたちスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィック(同形写像)であることの記述/証明

話題


About: ベクトルたちスペース(空間)

この記事の目次

1044: \(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、たち間\(C^\infty\)マップ(写像)および対応するチャートたちに対して、\((0, q)\)-テンソルたちのプルバックの、スタンダード(標準)ベーシス(基底)たちに関するコンポーネントたちファンクション(関数)はこれである

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、たち間\(C^\infty\)マップ(写像)および対応するチャートたちに対して、\((0, q)\)-テンソルたちのプルバックの、スタンダード(標準)ベーシス(基底)たちに関するコンポーネントたちファンクション(関数)はこれであることの記述/証明

話題


About: \(C^\infty\)マニフォールド(多様体)

この記事の目次

1043: \((0, q)\)-テンソルのポイントにおける\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、たち間の\(C^\infty\)マップ(写像)によるプルバック

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

\((0, q)\)-テンソルのポイントにおける\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、たち間の\(C^\infty\)マップ(写像)によるプルバックの定義

話題


About: \(C^\infty\)マニフォールド(多様体)

この記事の目次

1042: \(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、たち間\(C^\infty\)マップ(写像)および対応するチャートたちに対して、ディファレンシャルの、スタンダード(標準)ベーシス(基底)たちに関するコンポーネントたちファンクション(関数)はこれである

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

\(C^\infty\)マニフォールド(多様体)、バウンダリー(境界)付き、たち間\(C^\infty\)マップ(写像)および対応するチャートたちに対して、ディファレンシャルの、スタンダード(標準)ベーシス(基底)たちに関するコンポーネントたちファンクション(関数)はこれであることの記述/証明

話題


About: \(C^\infty\)マニフォールド(多様体)

この記事の目次