サブセット(部分集合)マイナスサブセット(部分集合)たちのシーケンス(列)のユニオン(和集合)は、それぞれが第1サブセット(部分集合)マイナスシーケンス(列)の部分的ユニオン(和集合)であるサブセット(部分集合)たちのインターセクション(共通集合)であることの記述/証明
話題
About: セット(集合)
この記事の目次
開始コンテキスト
- 読者は、セット(集合)の定義を知っている。
ターゲットコンテキスト
- 読者は、任意のセット(集合)に対して、任意のサブセット(部分集合)(第1サブセット(部分集合))マイナスサブセット(部分集合)たちの任意のシーケンス(列)のユニオン(和集合)は、それぞれが第1サブセット(部分集合)マイナスシーケンス(列)の部分的ユニオン(和集合)であるサブセット(部分集合)たちのインターセクション(共通集合)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義の一覧があります。
本サイトにてこれまで議論された命題の一覧があります。
本体
1: 記述
任意のセット(集合)
2: 証明
任意の
任意の