ベクトルたちスペース(空間)からの、サブスペース(部分空間)の中への、コンプリメンタリーサブスペース(補部分空間)についての、プロジェクション(射影)はリニア(線形)マップ(写像)であり、任意のサブスペース(部分空間)のイメージ(像)はサブスペース(部分空間)であることの記述/証明
話題
About: ベクトルたちスペース(空間)
この記事の目次
開始コンテキスト
ターゲットコンテキスト
- 読者は、任意のベクトルたちスペース(空間)からの、任意のサブスペース(部分空間)の中への、任意のコンプリメンタリーサブスペース(補部分空間)についての、プロジェクション(射影)はリニア(線形)マップ(写像)であり、任意のサブスペース(部分空間)の当該プロジェクション(射影)下のイメージ(像)はサブスペース(部分空間)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意のフィールド(体)
3: 証明
全体戦略: ステップ1: 任意の
ステップ1:
任意の
したがって、イエス。
ステップ2:
任意の
以下を満たすある
したがって、イエス。