2022年7月31日日曜日

325: 非オープン(開)サブトポロジカルスペース(空間)のサブセット(部分集合)はサブスペース(部分空間)上でオープン(開)である、もしも、それがベーストポロジカルスペース(空間)上でオープン(開)である場合

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

非オープン(開)サブトポロジカルスペース(空間)のサブセット(部分集合)はサブスペース(部分空間)上でオープン(開)である、もしも、それがベーストポロジカルスペース(空間)上でオープン(開)である場合であることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次


開始コンテキスト



ターゲットコンテキスト



  • 読者は、任意のトポロジカルスペース(空間)およびそれをベーススペース(空間)としてオープン(開)でない任意のサブトポロジカルスペース(空間)に対して、サブスペース(部分空間)の任意のサブセット(部分集合)はサブスペース(部分空間)上でオープン(開)である、もしも、それがベーススペース(空間)上でオープン(開)である場合という命題の記述および証明を得る。

オリエンテーション


本サイトにてこれまで議論された定義の一覧があります。

本サイトにてこれまで議論された命題の一覧があります。


本体


1: 記述


任意のトポロジカルスペース(空間)\(T\)および\(T\)上でオープン(開)でない任意のサブトポロジカルスペース(空間)\(T_s\)に対して、\(T_s\)の任意のサブセット(部分集合)\(S \subseteq T_s\)は\(T_s\)上でオープン(開)である、もしも、\(S\)が\(T\)上でオープン(開)である場合。


2: 証明


\(S\)は\(T\)上でオープン(開)であると仮定する。\(S = S \cap T_s\)、したがって、サブスペース(部分空間)トポロジーの定義によって、\(S\)は\(T_s\)上でオープン(開)である。


3: 注


本命題の逆は成立しない、なぜなら、\(S\)が\(T_s\)上でオープン(開)だと仮定して、\(S = U \cap T_s\)、ここで\(U\)は\(T\)上のオープンセット(開集合)である、サブスペース(部分空間)トポロジーの定義によって、しかし、\(T_s\)は\(T\)上でオープン(開)でないから、\(U \cap T_s\)は必ずしも\(T\)上でオープン(開)でない。\(T_s\)が\(T\)上でオープン(開)である場合については、別の命題を参照。


参考資料


<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>