コネクテッド(連結された)トポロジカルスペース(空間)上でいたる所でローカルにコンスタントであるマップ(写像)はグローバルにコンスタントであることの記述/証明
話題
About: トポロジカルスペース(空間)
この記事の目次
開始コンテキスト
ターゲットコンテキスト
- 読者は、任意のコネクテッド(連結された)トポロジカルスペース(空間)上でいたる所でローカルにコンスタントである任意のマップ(写像)はグローバルにコンスタントであるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義の一覧があります。
本サイトにてこれまで議論された命題の一覧があります。
本体
1: 記述
任意のコネクテッド(連結された)トポロジカルスペース(空間)
2: 証明
全てのポイントたちに対する
任意のポイント
任意のコネクテッド(連結された)トポロジカルスペース(空間)の任意のオープンカバーの任意の要素たちペアは、当該オープンカバーのいくつかの要素たちを介して有限数オープンセット(開集合)たちシーケンスコネクテッド(連結された)であるという命題によって、
3: 注
当命題は明白であるように思われるかもしれないが、そういうシーケンスの存在を厳密に証明しなければならない。