2023年2月26日日曜日

216: トポロジカルサブスペース(部分空間)たちのネストにおいて、サブスペース(部分空間)のコネクテッド(連結された)性はスーパースペース(空間)に依存しない

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルサブスペース(部分空間)たちのネストにおいて、サブスペース(部分空間)のコネクテッド(連結された)性はスーパースペース(空間)に依存しないことの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次


開始コンテキスト



ターゲットコンテキスト



  • 読者は、トポロジカルサブスペース(部分空間)たちの任意のネストにおいて、任意のサブスペース(部分空間)のコネクテッド(連結された)性は、当該サブスペース(部分空間)がサブスペース(部分空間)であるとみなされる元のスーパースペース(空間)に依存しないという命題の記述および証明を得る。

オリエンテーション


本サイトにてこれまで議論された定義の一覧があります。

本サイトにてこれまで議論された命題の一覧があります。


本体


1: 記述


任意のトポロジカルスペース(空間)Tおよび以下を満たすトポロジカルサブスペース(部分空間)たちの任意のネストT1,T2、つまり、T2T1T、に対して、もしも、T2T1のサブスペース(部分空間)としてコネクテッド(連結された)またはディスコネクテッド(連結されていない)であるならば、T2Tのサブスペース(部分空間)としてコネクテッド(連結された)またはディスコネクテッド(連結されていない)である; もしも、T2Tのサブスペース(部分空間)としてコネクテッド(連結された)またはディスコネクテッド(連結されていない)であるならば、T2T1のサブスペース(部分空間)としてコネクテッド(連結された)またはディスコネクテッド(連結されていない)である。


2: 証明


T2T1のサブスペース(部分空間)としてディスコネクテッド(連結されていない)であると仮定する。T2=U1U2U1U2=、ここで、UiT2上で空でないオープン(開)である。トポロジカルサブスペース(部分空間)たちの任意のネストにおいて、任意のサブスペース(部分空間)上の任意のサブセット(部分集合)のオープン(開)性は、当該サブスペース(部分空間)がサブスペース(部分空間)であるとみなされる元のスーパースペース(空間)に依存しないという命題によって、Uiはオープン(開)である、T2Tのサブスペース(部分空間)であるとみなしたとき。したがって、T2Tのサブスペース(部分空間)としてディスコネクテッド(連結されていない)である。

T2Tのサブスペース(部分空間)としてディスコネクテッド(連結されていない)であると仮定する。同様に、T2T1のサブスペース(部分空間)としてディスコネクテッド(連結されていない)である。

[T2T1のサブスペース(部分空間)としてディスコネクテッド(連結されていない)である] [T2Tのサブスペース(部分空間)としてディスコネクテッド(連結されていない)である]であるから、[T2Tのサブスペース(部分空間)としてディスコネクテッド(連結されていない)でない] [T2T1のサブスペース(部分空間)としてディスコネクテッド(連結されていない)でない]、しかし、"ディスコネクテッド(連結されていない)でない"は'コネクテッド(連結された)'以外の何物でもないから、[T2Tのサブスペース(部分空間)としてコネクテッド(連結された)である] [T2T1のサブスペース(部分空間)としてコネクテッド(連結された)である]。

同様に、[T2T1のサブスペース(部分空間)としてコネクテッド(連結された)である] [T2Tのサブスペース(部分空間)としてコネクテッド(連結された)である]。


参考資料


<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>