パスコネクテッド(連結された)サブスペース(部分空間)たちのユニオン(和集合)パスコネクテッド(連結された)である、もしも、各サブスペース(部分空間)からポイントを抽出したサブスペース(部分空間)がパスコネクテッド(連結された)である場合、ことの記述/証明
話題
About: トポロジカルスペース(空間)
この記事の目次
開始コンテキスト
ターゲットコンテキスト
- 読者は、任意のトポロジカルスペース(空間)に対して、任意のアンカウンタブル(不可算)かもしれない数のパスコネクテッド(連結された)サブスペース(部分空間)たちのユニオン(和集合)はパスコネクテッド(連結された)である、もしも、各サブスペース(部分空間)から1ポイントを抽出したサブスペース(部分空間)がパスコネクテッド(連結された)である場合、という命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義の一覧があります。
本サイトにてこれまで議論された命題の一覧があります。
本体
1: 記述
任意のトポロジカルスペース(空間)
2: 証明
任意のトポロジカルサブスペース(部分空間)上でパスコネクテッド(連結された)である任意の2ポイントたちは任意のより大きなサブスペース(部分空間)上でパスコネクテッド(連結された)であるという命題に留意する。
任意の