2024年4月14日日曜日

535: リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれないセット(集合)のアファインコンビネーション

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれないセット(集合)のアファインコンビネーションの定義

話題


About: ベクトルたちスペース(空間)

この記事の目次


開始コンテキスト



ターゲットコンテキスト



  • 読者は、リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれないセット(集合)のアファインコンビネーションの定義を得る。

オリエンテーション


本サイトにてこれまで議論された定義たちの一覧があります。

本サイトにてこれまで議論された命題たちの一覧があります。


本体


1: 構造化された記述


ここに'構造化された記述'のルールたちがある

エンティティ(実体)たち:
\( V\): \(\in \text{ 全てのリアル(実)ベクトルたちスペース(空間)たち }\)
\( \{p_0, ..., p_n\}\): \(\subseteq V\), \(\in \{V\text{ 上のベースポイントたちのアファインインディペンデント(独立)でないかもしれない全てのセット(集合)たち }\}\)
\(*p\): \( = \sum_{j = 0 \sim n} t^j p_j \in V\), \(t^j \in \mathbb{R}\)
//

コンディションたち:
\(\sum_{j = 0 \sim n} t^j = 1\)
//


2: 自然言語記述


任意のリアル(実)ベクトルたちスペース(空間)\(V\)、ベースポイントたちのアファインインディペンデント(独立)でないかもしれない任意のセット(集合)\(p_0, ..., p_n \in V\)に対して、以下を満たす任意のポイント\(p = \sum_{j = 0 \sim n} t^j p_j \in V\)、つまり、\(t^j \in \mathbb{R}, \sum_{j = 0 \sim n} t^j = 1\)


参考資料


<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>