ファイナイト(有限)ディメンショナル(次元)ベクトルたちスペース(空間)のリニア(線形)レンジ(値域)はベクトルたちスペース(空間)であることの記述/証明
話題
About: ベクトルたちスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、%フィールド(体)名%ベクトルたちスペース(空間)の定義を知っている。
- 読者は、リニア(線形)マップ(写像)の定義を知っている。
ターゲットコンテキスト
- 任意のファイナイト(有限)ディメンショナル(次元)ベクトルたちスペース(空間)の任意のリニア(線形)マップ(写像)下のレンジ(値域)はベクトルたちスペース(空間)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意のフィールド(体)
3: 証明
全体戦略: ステップ1:
ステップ1:
Let us take any basis for
Step 2: ステップ2:
それが意味するのは以下の通り: もしも、
私たちは、あるリニア(線形)にインディペンデント(独立)なサブセット(部分集合)を持っている、しかし、
ステップ3:
したがって、