トポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、ドメイン(定義域)の有限数クローズドカバー(閉被覆)の各クローズドセット(閉集合)への、マップ(写像)のドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合、ことの記述/証明
話題
About: トポロジカルスペース(空間)
この記事の目次
開始コンテキスト
ターゲットコンテキスト
- 読者は、任意のトポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、そのマップ(写像)の、ドメイン(定義域)の、ある有限数クローズドカバー(閉被覆)の各クローズドセット(閉集合)、への、ドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合、という命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義の一覧があります。
本サイトにてこれまで議論された命題の一覧があります。
本体
1: 記述
任意のトポロジカルスペース(空間)たち
2: 証明
任意のクローズドセット(閉集合)