ラベル 情報テーブル群 の投稿を表示しています。 すべての投稿を表示
ラベル 情報テーブル群 の投稿を表示しています。 すべての投稿を表示

2023年1月29日日曜日

405: もしも、ディスジョイント(互いに素な)サブセット(部分集合)たちのユニオン(共通集合)がオープン(開)である場合、各サブセット(部分集合)は必ずしもオープン(開)だとは限らない

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

Title: 405: もしも、ディスジョイント(互いに素な)サブセット(部分集合)たちのユニオン(共通集合)がオープン(開)である場合、各サブセット(部分集合)は必ずしもオープン(開)だとは限らない

もしも、ディスジョイント(互いに素な)サブセット(部分集合)たちのユニオン(共通集合)がオープン(開)である場合、各サブセット(部分集合)は必ずしもオープン(開)だとは限らないことの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

404: ディスジョイント(互いに素な)サブセット(部分集合)たちのマップ(写像)プリイメージ(前像)たちはディスジョイント(互いに素)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

ディスジョイント(互いに素な)サブセット(部分集合)たちのマップ(写像)プリイメージ(前像)たちはディスジョイント(互いに素)であることの記述/証明

話題


About: セット(集合)

この記事の目次

403: クオシエントトポロジースペース(空間)のサブセット(部分集合)はクローズド(閉)である、もしも、サブセット(部分集合)のクオシエントマップ(写像)下のプリイメージ(前像)がクローズド(閉)である場合、そしてその場合に限って

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

クオシエントトポロジースペース(空間)のサブセット(部分集合)はクローズド(閉)である、もしも、サブセット(部分集合)のクオシエントマップ(写像)下のプリイメージ(前像)がクローズド(閉)である場合、そしてその場合に限って、ことの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

402: クオシエントトポロジーのマップ(写像)はクオシエントマップ(写像)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

クオシエントトポロジーのマップ(写像)はクオシエントマップ(写像)であることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

401: クオシエント(商)トポロジーはマップ(写像)をコンティヌアス(連続)にする唯一の最も密なトポロジーである

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

クオシエント(商)トポロジーはマップ(写像)をコンティヌアス(連続)にする唯一の最も密なトポロジーであることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

400: セット(集合)上の、マップ(写像)に関するクオシエント(商)トポロジー

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

セット(集合)上の、マップ(写像)に関するクオシエント(商)トポロジーの定義

話題


About: トポロジカルスペース(空間)

この記事の目次

399: トポロジカルスペース(空間)をマップ(写像)を介してトポロジカルスペース(空間)へアタッチして得られたアジャンクショントポロジカルスペース(空間)

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルスペース(空間)をマップ(写像)を介してトポロジカルスペース(空間)へアタッチして得られたアジャンクショントポロジカルスペース(空間)の定義

話題


About: トポロジカルスペース(空間)

この記事の目次

398: トポロジカルサム

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルサムの定義

話題


About: トポロジカルスペース(空間)

この記事の目次

397: ポイントのイメージ(像)がサブセット(部分集合)のイメージ(像)上にあるとき、ポイントはサブセット(部分集合)上にある、もしも、マップ(写像)がサブセット(部分集合)のイメージ(像)に関してインジェクティブ(単射)である場合

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

ポイントのイメージ(像)がサブセット(部分集合)のイメージ(像)上にあるとき、ポイントはサブセット(部分集合)上にある、もしも、マップ(写像)がサブセット(部分集合)のイメージ(像)に関してインジェクティブ(単射)である場合、ことの記述/証明

話題


About: セット(集合)

この記事の目次

2022年11月13日日曜日

396: クウォシェント(商)マップ(写像)のユニバーサルプロパティ

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

クウォシェント(商)マップ(写像)のユニバーサルプロパティの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

395: コンティヌアス(連続)エンベディング(埋め込み)のユニバーサルプロパティ

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

コンティヌアス(連続)エンベディング(埋め込み)のユニバーサルプロパティの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

394: クウォシェント(商)マップ(写像)

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

クウォシェント(商)マップ(写像)の定義

話題


About: トポロジカルスペース(空間)

この記事の目次

393: コンティヌアス(連続)マップ(写像)の、ドメイン(定義域)およびコドメイン(余域)についてのリストリクション(制限)はコンティヌアス(連続)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

コンティヌアス(連続)マップ(写像)の、ドメイン(定義域)およびコドメイン(余域)についてのリストリクション(制限)はコンティヌアス(連続)であることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

392: サブセット(部分集合)のマップ(写像)後のプリイメージ(前像)のコンポジション(合成)はアイデンティカル(恒等)である、もしも、それが引数セット(集合)に包含されている場合、そしてその場合に限って

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

サブセット(部分集合)のマップ(写像)後のプリイメージ(前像)のコンポジション(合成)はアイデンティカル(恒等)である、もしも、それが引数セット(集合)に包含されている場合、そしてその場合に限って、ことの記述/証明

話題


About: セット(集合)

この記事の目次

391: サブセット(部分集合)のマップ(写像)後のプリイメージ(前像)のコンポジション(合成)はアイデンティカル(恒等)である、もしも、マップ(写像)が引数セット(集合)イメージ(像)に関してインジェクティブ(単射)である場合

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

サブセット(部分集合)のマップ(写像)後のプリイメージ(前像)のコンポジション(合成)はアイデンティカル(恒等)である、もしも、マップ(写像)が引数セット(集合)イメージ(像)に関してインジェクティブ(単射)である場合、ことの記述/証明

話題


About: セット(集合)

この記事の目次

2022年11月6日日曜日

390: プリイメージ(前像)後のマップ(写像)コンポジション(合成)はアイデンティカル(恒等)である、もしも、引数セット(集合)がマップ(写像)イメージ(像)のサブセット(部分集合)である場合、そしてその場合に限って

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

プリイメージ(前像)後のマップ(写像)コンポジション(合成)はアイデンティカル(恒等)である、もしも、引数セット(集合)がマップ(写像)イメージ(像)のサブセット(部分集合)である場合、そしてその場合に限って、であることの記述/証明

話題


About: セット(集合)

この記事の目次

389: もしも、トポロジカルスペース(空間)間マップ(写像)下のクローズドセット(閉集合)のプリイメージ(前像)がクローズド(閉)である場合、マップ(写像)はコンティヌアス(連続)である

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

もしも、トポロジカルスペース(空間)間マップ(写像)下のクローズドセット(閉集合)のプリイメージ(前像)がクローズド(閉)である場合、マップ(写像)はコンティヌアス(連続)であることの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

388: トポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、ドメイン(定義域)の有限数クローズドカバー(閉被覆)の各クローズドセット(閉集合)への、マップ(写像)のドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、ドメイン(定義域)の有限数クローズドカバー(閉被覆)の各クローズドセット(閉集合)への、マップ(写像)のドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合、ことの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

387: トポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、ドメイン(定義域)のオープンカバー(開被覆)の各オープンセット(開集合)への、マップ(写像)のドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

トポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、ドメイン(定義域)のオープンカバー(開被覆)の各オープンセット(開集合)への、マップ(写像)のドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合、ことの記述/証明

話題


About: トポロジカルスペース(空間)

この記事の目次

386: Writer '.uno:InsertPagebreak'

<このシリーズの前の記事 | このシリーズの目次 | このシリーズの次の記事>

カレントビューカーソル地点にページブレイクを挿入するUNOディスパッチコマンド

話題


About: UNO (Universal Network Objects)
About: LibreOffice
About: Apache OpenOffice
About: Writer

この記事の目次