バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間の\(C^k\)マップ(写像)、ここで、\(k\)は\(\infty\)を含むの定義
話題
About: \(C^\infty\)マニフォールド(多様体)
この記事の目次
開始コンテキスト
ターゲットコンテキスト
- 読者は、バウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間の\(C^k\)マップ(写像)、ここで、\(k\)は\(\infty\)を含む、の定義を得る。
オリエンテーション
本サイトにてこれまで議論された定義の一覧があります。
本サイトにてこれまで議論された命題の一覧があります。
本体
1: 定義
(空かもしれない)バウンダリー(境界)付きの任意の\(C^\infty\)マニフォールド(多様体)たち\(M_1, M_2\)、任意のサブセット(部分集合)たち\(S_1 \subseteq M_1, S_2 \subseteq M_2\)、任意のナチュラルナンバー(自然数)(0を含む)または\(\infty\)の\(k\)に対して、以下を満たす任意のマップ(写像)\(f: S_1 \to S_2\)、つまり、それは各ポイントにおいて\(C^k\)である、ポイントにおいてコンティニュアス(連続)なマップ(写像)の定義によってかバウンダリー(境界)付き\(C^\infty\)マニフォールド(多様体)たちの任意のサブセット(部分集合)たち間のマップ(写像)でポイントにおいて\(C^k\)なもの、ここで、\(k\)は\(0\)を除外し\(\infty\)を含む、の定義によって
2: 注
\(k = 0\)に対する本定義は、明らかに別の記事内に記述されているコンティニュアス(連続)マップ(写像)の定義に等しい。