ファイナイト(有限)ディメンショナル(次元)ベクトルたちスペース(空間)たち間のリニア(線形)サージェクション(全射)に対して、コドメイン(余域)のディメンション(次元)はドメイン(定義域)のそれに等しいかそれより小さいことの記述/証明
話題
About: ベクトルたちスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、リニア(線形)マップ(写像)の定義を知っている。
- 読者は、ベクトルたちスペース(空間)のディメンション(次元)の定義を知っている。
- 読者は、任意のベクトルたちスペース(空間)に対して、任意のファイナイト(有限)ジェネレイター(作成元たち)は縮小してあるベーシス(基底)にできるという命題を認めている。
ターゲットコンテキスト
- 読者は、任意のファイナイト(有限)ディメンショナル(次元)ベクトルたちスペース(空間)たち間の任意のリニア(線形)サージェクション(全射)に対して、コドメイン(余域)のディメンション(次元)はドメイン(定義域)のそれに等しいかそれより小さいという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意のフィールド(体)
3: 証明
全体戦略: ステップ1:
ステップ1:
ステップ2:
各
ステップ3: