ベーシス(基底)を持つモジュール(加群)からモジュール(加群)の中へ、リニアマップ(線形写像)を、ベーシス(基底)をマッピングしマッピングをリニア(線形)に拡張することによって定義できることの記述/証明
話題
About: モジュール(加群)
この記事の目次
開始コンテキスト
- 読者は、モジュール(加群)のベーシス(基底)の定義を知っている。
- 読者は、リニア(線形)マップ(写像)の定義を知っている。
- 読者は、任意のベーシス(基底)を持つ任意のモジュール(加群)に対して、任意の要素の当該ベーシス(基底)に関するコンポーネントたちセット(集合)はユニークであるという命題を認めている。
ターゲットコンテキスト
- 読者は、任意のベーシス(基底)を持つ任意のモジュール(加群)から任意のモジュール(加群)の中へ、あるリニアマップ(線形写像)を、当該ベーシス(基底)をマッピングしマッピングをリニア(線形)に拡張することによって定義できるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 証明
全体戦略: ステップ1:
ステップ1:
各
当該表現はユニークである、各
それが意味するのは、
したがって、
したがって、
ステップ2:
すると、