グループ(群)ホモモーフィズム(準同形写像)はインジェクティブ(単射)である、もしも、カーネル(核)が1サブグループ(部分群)である場合、そしてその場合に限って、ことの記述/証明
話題
About: グループ(群)
この記事の目次
開始コンテキスト
- 読者は、グループ(群)の定義を知っている。
- 読者は、インジェクション(単射)の定義を知っている。
ターゲットコンテキスト
- 読者は、任意のグループ(群)ホモモーフィズム(準同形写像)はインジェクティブ(単射)である、もしも、カーネル(核)が1サブグループ(部分群)である場合、そしてその場合に限って、という命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 証明
全体戦略: ステップ1:
ステップ1:
ステップ2:
以下を満たすある