バイジェクティブ(全単射)グループ(群)ホモモーフィズム(準同形写像)は'グループ(群)たち - ホモモーフィズム(準同形写像)たち'アイソモーフィズム(同形写像)であることの記述/証明
話題
About: グループ(群)
この記事の目次
開始コンテキスト
- 読者は、グループ(群)の定義を知っている。
- 読者は、バイジェクション(全単射)の定義を知っている。
- 読者は、%ストラクチャー(構造)種類名%ホモモーフィズム(準同形写像)の定義を知っている。
- 読者は、%カテゴリー名%アイソモーフィズム(同形写像)の定義を知っている。
ターゲットコンテキスト
- 読者は、任意のバイジェクティブ(全単射)グループ(群)ホモモーフィズム(準同形写像)は'グループ(群)たち - ホモモーフィズム(準同形写像)たち'アイソモーフィズム(同形写像)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意のグループ(群)たち
3: 証明
問題は、
任意の
任意の
4: 注
一般に、あるカテゴリーのあるバイジェクティブ(全単射)モーフィズムは必ずしも%カテゴリー名%アイソモーフィズム(同形写像)ではない。例えば、あるバイジェクティブ(全単射)コンティニュアス(連続)マップ(写像)(それは、'トポロジカルスペース(空間)たち - コンティニュアス(連続)マップ(写像)たち'カテゴリーのモーフィズムである)は、必ずしもホメオモーフィズム(位相同形写像)(それは、'トポロジカルスペース(空間)たち - コンティニュアス(連続)マップ(写像)たち'アイソモーフィズム(同形写像)である)ではない。