話題
About:
この記事の目次
開始コンテキスト
-
読者は、
マニフォールド(多様体)、バウンダリー(境界)付き、の定義を知っている。 - 読者は、任意のトポロジカルスペース(空間)およびそれをベーススペース(空間)としてオープン(開)である任意のトポロジカルサブスペース(部分空間)に対して、サブスペース(部分空間)の任意のサブセット(部分集合)はサブスペース(部分空間)上でオープン(開)である、もしも、それがベーススペース(空間)でオープン(開)である場合、そしてその場合に限ってという命題を認めている。
- 読者は、任意のコンティヌアス(連続)マップ(写像)の、ドメイン(定義域)およびコドメイン(余域)についてのリストリクション(制限)はコンティヌアス(連続)であるという命題を認めている。
ターゲットコンテキスト
-
読者は、任意の
マニフォールド(多様体)、バウンダリー(境界)付き、その任意のチャートに対して、当該チャートの、任意のオープンサブセット(開部分集合)ドメイン(定義域)についてのリストリクション(制限)はチャートであるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 証明
全体戦略: ステップ1:
ステップ1:
ステップ2:
トランジションマップ(遷移写像)
トランジションマップ(遷移写像)
したがって、
したがって、