'ベクトルたちスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィズム(同形写像)に対して、ドメイン(定義域)のリニア(線形)にインディペンデント(独立)サブセット(部分集合)またはベーシス(基底)のイメージ(像)は、コドメイン(余域)上でリニア(線形)にインディペンデント(独立)サブセット(部分集合)またはベーシス(基底)であることの記述/証明
話題
About: ベクトルたちスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、%フィールド(体)名%ベクトルたちスペース(空間)の定義を知っている。
- 読者は、%カテゴリー名%アイソモーフィズム(同形写像)の定義を知っている。
- 読者は、モジュール(加群)のリニア(線形)にインディペンデント(独立)なサブセット(部分集合)の定義を知っている。
- 読者は、モジュール(加群)のベーシス(基底)の定義を知っている。
ターゲットコンテキスト
- 読者は、任意の'ベクトルたちスペース(空間)たち - リニア(線形)モーフィズム(射)たち'アイソモーフィズム(同形写像)に対して、当該ドメイン(定義域)の任意のリニア(線形)にインディペンデント(独立)サブセット(部分集合)または任意のベーシス(基底)のイメージ(像)は、当該コドメイン(余域)上でリニア(線形)にインディペンデント(独立)サブセット(部分集合)またはベーシス(基底)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意のフィールド(体)
3: 注
当該ベクトルたちスペース(空間)たちは、ファイナイト(有限)ディメンショナル(次元)である必要はない;
本命題は、通常、明らかであるとみなされている、
4: 証明
全体戦略: ステップ1: 任意のファイナイト(有限)サブセット(部分集合)
ステップ1:
何らかの
見る必要のあることは、各
ステップ2:
ステップ1によって、
見る必要のあることは、各ポイント