トポロジカルスペース(空間)のサブセット(部分集合)たちのローカルにファイナイト(有限)なセット(集合)に対して、サブセット(部分集合)たちのユニオン(和集合)のクロージャー(閉包)はサブセット(部分集合)たちのクロージャー(閉包)たちのユニオン(和集合)であることの記述/証明
話題
About: トポロジカルスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、トポロジカルスペース(空間)のサブセット(部分集合)たちのローカルにファイナイト(有限な)セット(集合)の定義を知っている。
- 読者は、サブセット(部分集合)のクロージャー(閉包)の定義を知っている。
- 読者は、任意のサブセット(部分集合)のクロージャー(閉包)はサブセット(部分集合)とサブセット(部分集合)のアキューミュレーションポイント(集積点)たちセット(集合)のユニオン(和集合)であるという命題を認めている。
- 読者は、任意のトポロジカルスペース(空間)および任意のサブセット(部分集合)たちの任意のセット(集合)に対して、当該サブセット(部分集合)たちのクロージャー(閉包)たちのユニオン(和集合)は当該サブセット(部分集合)たちのユニオン(和集合)のクロージャー(閉包)内に包含されているという命題を認めている。
ターゲットコンテキスト
- 読者は、任意のトポロジカルスペース(空間)のサブセット(部分集合)たちのローカルにファイナイト(有限)な任意のセット(集合)に対して、当該サブセット(部分集合)たちのユニオン(和集合)のクロージャー(閉包)は当該サブセット(部分集合)たちのクロージャー(閉包)たちのユニオン(和集合)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意のトポロジカルスペース(空間)
3: 証明
全体戦略: ステップ1:
ステップ1:
ステップ2:
各
もしも、
もしも、
したがって、
したがって、
したがって、