マップ(写像)に対して、サブセット(部分集合)マイナスサブセット(部分集合)のイメージ(像)は必ずしも第1サブセット(部分集合)のイメージ(像)マイナス第2サブセット(部分集合)のイメージ(像)ではないことの記述/証明
話題
About: セット(集合)
この記事の目次
開始コンテキスト
- 読者は、マップ(写像)の定義を知っている。
ターゲットコンテキスト
- 読者は、任意のマップ(写像)に対して、任意のサブセット(部分集合)マイナス任意のサブセット(部分集合)のイメージ(像)は必ずしも第1サブセット(部分集合)のイメージ(像)マイナス第2サブセット(部分集合)のイメージ(像)ではないという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
必ずしも、
//
2: 自然言語記述
任意のセット(集合)たち
3: 証明
1つの反例で十分である。
4: 注
これを、プリイメージ(前像)たちについての命題と比較のこと。
等号は、