ノーマルサブグループ(正規部分群)たちのファイナイト(有限)プロダクトはコミュータティブ(可換)であり、ノーマルサブグループ(正規部分群)であることの記述/証明
話題
About: グループ
この記事の目次
開始コンテキスト
- 読者は、グループ(群)のノーマルサブグループ(正規部分群)の定義を知っている。
- 読者は、任意のグループに対して、任意のファイナイト(有限)数サブグループ(部分群)たちのプロダクトはアソシアティブ(結合的)であるという命題を認めている。
- 読者は、任意のグループに対して、当該グループ(群)の任意のサブグループ(部分群)の、当該グループ(群)の任意のノーマルサブグループ(正規部分群)によるマルチプリケーション(乗法)を取ったものは当該グループ(群)のサブグループ(部分群)であるという命題を認めている。
- 読者は、任意のグループ(群)、その任意のサブグループ(部分群)に対して、当該サブグループ(部分群)はノーマルサブグループ(正規部分群)である、もしも、それの、当該グループ(群)の各要素によるコンジュゲート(共役)サブグループ(部分群)がそれの中に包含されている場合、という命題を認めている。
ターゲットコンテキスト
- 読者は、任意のグループに対して、任意のファイナイト(有限)数ノーマルサブグループたちのプロダクトはコミュータティブ(可換)であり、ノーマルサブグループであるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意のグループ
3: 証明
コミュータティビティ(可換性)を帰納法によって証明しよう。
コミュータティビティ(可換性)が
したがって、各
主張が
したがって、