hTopカテゴリー(圏)の定義
話題
About: カテゴリー(圏)
この記事の目次
開始コンテキスト
- 読者は、カテゴリー(圏)の定義を知っている。
- 読者は、トポロジカルスペース(空間)の定義を知っている。
- 読者は、ホモトピックマップ(写像)たちの定義を知っている。
- 読者は、任意のトポロジカルスペース(空間)たち間の全てのコンティニュアス(連続)マップ(写像)たちのセット(集合)上において、ホモトピックであることはイクイバレンスリレーション(同値関係)であるという命題を認めている。
- 読者は、任意の第1トポロジカルスペース(空間)から任意の第2トポロジカルスペース(空間)の中への任意のホモトピックマップ(写像)たちおよび任意の第2トポロジカルスペース(空間)から任意の第3トポロジカルスペース(空間)の中への任意のホモトピックマップ(写像)たちに対して、当該ホモトピックマップ(写像)たちのコンポジション(合成)たちはホモトピックであるという命題を認めている。
ターゲットコンテキスト
- 読者は、hTopカテゴリー(圏)の定義を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
コンディションたち:
//
2: 自然言語記述
以下を満たすカテゴリー(圏)
3: 注
本定義が可能であるのは、任意のトポロジカルスペース(空間)たち間の全てのコンティニュアス(連続)マップ(写像)たちのセット(集合)上において、ホモトピックであることはイクイバレンスリレーション(同値関係)であるという命題および任意の第1トポロジカルスペース(空間)から任意の第2トポロジカルスペース(空間)の中への任意のホモトピックマップ(写像)たちおよび任意の第2トポロジカルスペース(空間)から任意の第3トポロジカルスペース(空間)の中への任意のホモトピックマップ(写像)たちに対して、当該ホモトピックマップ(写像)たちのコンポジション(合成)たちはホモトピックであるという命題による。
マップ(写像)たちがホモトピックであるのは、