トポロジカルスペース(空間)たち間のコンティニュアス(連続)マップ(写像)たちのセット(集合)上において、ホモトピックであることはイクイバレンスリレーション(同値関係)であることの記述/証明
話題
About: トポロジカルスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、ホモトピックマップ(写像)たちの定義を知っている。
- 読者は、セット(集合)上のイクイバレンスリレーション(同値関係)の定義を知っている。
- 読者は、任意の有限個のコンティヌアス(連続)マップ(写像)たちのプロダクトマップ(写像)は、プロダクトトポロジーによってコンティヌアス(連続)であるという命題を認めている。
- 読者は、任意のトポロジカルスペース(空間)たちの任意のサブスペース(部分空間)たちの間の任意のマップ(写像)たちで任意の対応するポイントたちでコンティニュアス(連続)であるものに対して、コンポジション(合成)は当該ポイントにおいてコンティニュアス(連続)であるという命題を認めている。
- 読者は、任意のトポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、そのマップ(写像)の、ドメイン(定義域)の、ある有限数クローズドカバー(閉被覆)の各クローズドセット(閉集合)、への、ドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合、という命題を認めている。
ターゲットコンテキスト
- 読者は、任意のトポロジカルスペース(空間)たち間の全てのコンティニュアス(連続)マップ(写像)たちのセット(集合)上において、ホモトピックであることはイクイバレンスリレーション(同値関係)であるという命題を認めている。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 証明
全体戦略: ステップ1:
ステップ1:
1)
2)
3)