2つのポジティブ(正)ナチュラルナンバー(自然数)たちでそれらの最大公約数が1であるものに対して、インテジャー(整数)たちモジュロナンバー(自然数)たちの積グループ(群)は、インテジャー(整数)たちモジュロ第1ナンバー(数)グループ(群)とインテジャー(整数)たちモジュロ第2ナンバー(数)グループ(群)のダイレクトプロダクトへ'グループ(群)たち - ホモモーフィズム(準同形写像)たち'アイソモーフィック(同形写像)であることの記述/証明
話題
About: グループ(群)
この記事の目次
開始コンテキスト
- 読者は、インテジャー(整数)たちモジュロナチュラルナンバー(自然数)グループ(群)の定義を知っている。
- 読者は、ストラクチャー(構造)たちのダイレクトプロダクトの定義を知っている。
- 読者は、任意のグループ(群)たち間の任意のマップ(写像)で任意の2要素たちのプロダクト(積)を当該要素たちのイメージ(像)たちのプロダクト(積)へマップするものはグループ(群) ホモモーフィズム(準同形写像)であるという命題を認めている。
- 読者は、任意のバイジェクティブ(全単射)グループ(群)ホモモーフィズム(準同形写像)は'グループ(群)たち - ホモモーフィズム(準同形写像)たち'アイソモーフィズム(同形写像)であるという命題を認めている。
ターゲットコンテキスト
- 読者は、任意の2つのポジティブ(正)ナチュラルナンバー(自然数)たちでそれらの最大公約数が1であるものに対して、インテジャー(整数)たちモジュロ当該ナンバー(自然数)たちの積グループ(群)は、インテジャー(整数)たちモジュロ第1ナンバー(数)グループ(群)とインテジャー(整数)たちモジュロ第2ナンバー(数)グループ(群)のダイレクトプロダクトへ'グループ(群)たち - ホモモーフィズム(準同形写像)たち'アイソモーフィック(同形写像)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 証明
全体戦略: ステップ1: アイソモーフィック(同形写像)にしようとする
ステップ1:
アイソモーフィック(同形写像)にしようとする
考えてみると、唯一のオプションしかない:
それをリニア(線形)に拡張すると、
それは本当にウェルデファインド(妥当に定義された)であることを見よう。
ステップ2:
第1に、
各
したがって、
任意の
さて、
したがって、
したがって、
したがって、