フィールド(体)上方の\(k\)個のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちのテンソルプロダクト(積)に対して、要素の、ベクトルたちスペース(空間)たちに対するベーシス(基底)たちに関するスタンダード(標準)ベーシス(基底)たちに関するコンポーネントたちのトランジション(遷移)はこれであることの記述/証明
話題
About: ベクトルたちスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、フィールド(体)上方の\(k\)個のベクトルたちスペース(空間)たちのテンソルプロダクト(積)の定義を知っている。
- 読者は、任意のフィールド(体)上方の任意の\(k\)個のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちのテンソルプロダクト(積)に対して、当該ベクトルたちスペース(空間)たちに対する任意のベーシス(基底)たちに関するスタンダード(標準)ベーシス(基底)たちのトランジション(遷移)はこれであるという命題を認めている。
- 読者は、任意のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)に対して、ベーシス(基底)たちの任意の変更に関する任意のベクトルのコンポーネントたちのトランジション(遷移)はこれであるという命題を認めている。
- 読者は、任意のフィールド(体)、任意のファイナイト(有限)数ファイナイト(有限)-ディメンショナル(次元)当該フィールド(体)ベクトルたちスペース(空間)たち、当該フィールド(体)に関するテンソルたちスペース(空間)または任意のフィールド(体)上方の任意のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちのテンソルプロダクト(積)に対して、任意のスタンダード(標準)ベーシス(基底)たちまたはコンポーネントたちのトランジション(遷移)はスクウェアマトリックス(正方行列)である、そして、当該インバース(逆)マトリックス(行列)は当該インバース(逆)たちのプロダクト(積)であるという命題を認めている。
ターゲットコンテキスト
- 読者は、任意のフィールド(体)上方の任意の\(k\)個のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちのテンソルプロダクト(積)に対して、任意の要素の、当該ベクトルたちスペース(空間)たちに対する任意のベーシス(基底)たちに関するスタンダード(標準)ベーシス(基底)たちに関するコンポーネントたちのトランジション(遷移)はこれであるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
\(F\): \(\in \{\text{ 全ての定義フィールド(体)たち }\}\)
\(\{V_1, ..., V_k\}\): \(\subseteq \{\text{ 全てのファイナイト(有限)-ディメンショナル(次元)dimensional } F \text{ ベクトルたちスペース(空間)たち }\}\)
\(V_1 \otimes ... \otimes V_k\): \(= \text{ 当該テンソルプロダクト(積) }\)
\(\{B_1, ..., B_k\}\): \(B_j \in \{\text{ the bases for } V_j\} = \{{b_j}_l \vert 1 \le l \le dim V_j\}\)
\(\{B_1, ..., B_k\}\): \(B_j \in \{\text{ に対する全てのベーシス(基底)たち } V_j\} = \{{b_j}_l \vert 1 \le l \le dim V_j\}\)
\(\{B'_1, ..., B'_k\}\): \(B'_j \in \{\text{ the bases for } V_j\} = \{{b_j}_l \vert 1 \le l \le dim V_j\}\)
\(\{B'_1, ..., B'_k\}\): \(B'_j \in \{\text{ に対する全てのベーシス(基底)たち } V_j\} = \{{b_j}_l \vert 1 \le l \le dim V_j\}\)
\(B\): \(= \{[(({b_1}_{l_1}, ..., {b_k}_{l_k}))] \vert {b_j}^{l_j} \in B_j\}\), \(\in \{\text{ に対する全てのベーシス(基底)たち } V_1 \otimes ... \otimes V_k\}\)
\(B'\): \(= \{[(({b'_1}_{l_1}, ..., {b'_k}_{l_k}))] \vert {b'_j}^{l_j} \in B'_j\}\), \(\in \{\text{ に対する全てのベーシス(基底)たち } V_1 \otimes ... \otimes V_k\}\)
//
ステートメント(言明)たち:
\({b'_j}_l = {b_j}_m {M_j}^m_l\)
\(\implies\)
\(\forall f = f^{l_1, ..., l_k} [(({b_1}_{l_1}, ..., {b_k}_{l_k}))] = f'^{m_1, ..., m_k} [(({b'_1}_{m_1}, ..., {b'_k}_{m_k}))] \in V_1 \otimes ... \otimes V_k (f'^{l_1, ..., l_k} = {{M_1}^{-1}}^{l_1}_{m_1} ... {{M_k}^{-1}}^{l_k}_{m_k} f^{m_1, ..., m_k})\)
//
2: 証明
全体戦略: 単に、任意のフィールド(体)上方の任意の\(k\)個のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちのテンソルプロダクト(積)に対して、当該ベクトルたちスペース(空間)たちに対する任意のベーシス(基底)たちに関するスタンダード(標準)ベーシス(基底)たちのトランジション(遷移)はこれであるという命題、任意のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)に対して、ベーシス(基底)たちの任意の変更に関する任意のベクトルのコンポーネントたちのトランジション(遷移)はこれであるという命題、任意のフィールド(体)、任意のファイナイト(有限)数ファイナイト(有限)-ディメンショナル(次元)当該フィールド(体)ベクトルたちスペース(空間)たち、当該フィールド(体)に関するテンソルたちスペース(空間)または任意のフィールド(体)上方の任意のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちのテンソルプロダクト(積)に対して、任意のスタンダード(標準)ベーシス(基底)たちまたはコンポーネントたちのトランジション(遷移)はスクウェアマトリックス(正方行列)である、そして、当該インバース(逆)マトリックス(行列)は当該インバース(逆)たちのプロダクト(積)であるという命題を適用する; ステップ1: \([(({b'_1}_{l_1}, ..., {b'_k}_{l_k}))] = [(({b_1}_{m_1}, ..., {b_k}_{m_k}))] {M_1}^{m_1}_{l_1} ... {M_k}^{m_k}_{l_k}\)であることを見る; ステップ2: 本命題を結論する。
ステップ1:
\([(({b'_1}_{l_1}, ..., {b'_k}_{l_k}))] = [(({b_1}_{m_1}, ..., {b_k}_{m_k}))] {M_1}^{m_1}_{l_1} ... {M_k}^{m_k}_{l_k}\)、任意のフィールド(体)上方の任意の\(k\)個のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちのテンソルプロダクト(積)に対して、当該ベクトルたちスペース(空間)たちに対する任意のベーシス(基底)たちに関するスタンダード(標準)ベーシス(基底)たちのトランジション(遷移)はこれであるという命題によって。
ステップ2:
任意のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)に対して、ベーシス(基底)たちの任意の変更に関する任意のベクトルのコンポーネントたちのトランジション(遷移)はこれであるという命題を適用しよう。
任意のフィールド(体)、任意のファイナイト(有限)数ファイナイト(有限)-ディメンショナル(次元)当該フィールド(体)ベクトルたちスペース(空間)たち、当該フィールド(体)に関するテンソルたちスペース(空間)または任意のフィールド(体)上方の任意のファイナイト(有限)-ディメンショナル(次元)ベクトルたちスペース(空間)たちのテンソルプロダクト(積)に対して、任意のスタンダード(標準)ベーシス(基底)たちまたはコンポーネントたちのトランジション(遷移)はスクウェアマトリックス(正方行列)である、そして、当該インバース(逆)マトリックス(行列)は当該インバース(逆)たちのプロダクト(積)であるという命題によって、\(f'^{l_1, ..., l_k} = {{M_1}^{-1}}^{l_1}_{m_1} ... {{M_k}^{-1}}^{l_k}_{m_k} f^{m_1, ..., m_k}\)。