ファイナイト(有限)ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)上のアファインシンプレックス(単体)はカノニカル(自然な)トポロジカルスーパースペース(空間)上でクローズド(閉)でコンパクトであることの記述/証明
話題
About: ベクトルたちスペース(空間)
About: トポロジカルスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、アファインシンプレックス(単体)の定義を知っている。
- 読者は、クローズドセット(閉集合)の定義を知っている。
- 読者は、トポロジカルスペース(空間)のコンパクトサブセット(部分集合)の定義を知っている。
- 読者は、コンティニュアス(連続)マップ(写像)の定義を知っている。
- 読者は、任意のファイナイト(有限)ディメンショナル(次元)ベクトルたちスペース(空間)の中への任意のアファインシンプレックス(単体)マップ(写像)はドメイン(定義域)およびコドメイン(余域)のカノニカル(自然な)トポロジーたちに関してコンティニュアス(連続)であるという命題を認めている。
- 読者は、任意のアファインシンプレックス(単体)マップ(写像)のドメイン(定義域)は当該ユークリディアントポロジカルスーパースペース(空間)上でクローズド(閉)でコンパクトであるという命題を認めている。
- 読者は、任意のトポロジカルスペース(空間)たち間の任意のコンティニュアス(連続)マップ(写像)に対して、ドメイン(定義域)の任意のコンパクトサブセット(部分集合)のイメージ(像)はコンパクトであるという命題を認めている。
- 読者は、任意のハウスドルフトポロジカルスペース(空間)の任意のコンパクトサブセット(部分集合)はクローズド(閉)であるという命題を認めている。
ターゲットコンテキスト
- 読者は、任意のファイナイト(有限)ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)上の任意のアファインシンプレックス(単体)はカノニカル(自然な)トポロジカルスーパースペース(空間)上でクローズド(閉)でコンパクトであるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意の
3: 証明
当該アファインシンプレックス(単体)マップ(写像)
したがって、