アジャンクション(付加)トポロジカルスペース(空間)に対して、アタッチング先スペース(空間)からアジャンクション(付加)スペース(空間)へのカノニカルマップ(写像)はコンティニュアス(連続)エンベディング(埋め込み)であることの記述/証明
話題
About: トポロジカルスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、トポロジカルスペース(空間)の定義を知っている。
- 読者は、トポロジカルスペース(空間)をマップ(写像)を介してトポロジカルスペース(空間)へアタッチして得られたアジャンクショントポロジカルスペース(空間)を知っている。
- 読者は、コンティヌアス(連続)エンベディング(埋め込み)を知っている。
- 読者は、サブスペーストポロジーの定義を知っている。
- 読者は、セット(集合)上の、マップ(写像)に関するクオシエント(商)トポロジーを知っている。
- 読者は、トポロジカルサムの定義を知っている。
- 読者は、任意のマップ(写像)に対して、任意の、セット(集合)たちのユニオン(和集合)、のマップ(写像)イメージ(像)はそれらセット(集合)たちのマップ(写像)イメージ(像)たちのユニオン(和集合)であるという命題を認めている。
- 読者は、任意のコンティヌアス(連続)マップ(写像)の、ドメイン(定義域)およびコドメイン(余域)についてのリストリクション(制限)はコンティヌアス(連続)であるという命題を認めている。
- 読者は、任意のマップ(写像)に対して、任意の、セット(集合)たちのユニオン(和集合)、のマップ(写像)プリイメージ(前像)は、それらセット(集合)たちのマップ(写像)プリイメージ(前像)たちのユニオン(和集合)であるという命題を認めている。
ターゲットコンテキスト
- 読者は、任意のアジャンクション(付加)トポロジカルスペース(空間)に対して、アタッチング先スペース(空間)からアジャンクション(付加)スペース(空間)へのカノニカルマップ(写像)はコンティニュアス(連続)エンベディング(埋め込み)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義の一覧があります。
本サイトにてこれまで議論された命題の一覧があります。
本体
1: 記述
任意のトポロジカルスペース(空間)たち