ファイナイト(有限)ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれないセット(集合)によってスパンされる(張られる)アファインまたはコンベックスセット(集合)からファイナイト(有限)ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)の中へのアファインマップ(写像)はカノニカル(自然な)トポロジーたちに関してコンティニュアス(連続)であることの記述/証明
話題
About: ベクトルたちスペース(空間)
About: トポロジカルスペース
この記事の目次
開始コンテキスト
- 読者は、リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれないセット(集合)によってスパンされる(張られる)アファインセット(集合)からのアファインマップ(写像)の定義を知っている。
- 読者は、リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれないセット(集合)によってスパンされる(張られる)コンベックスセット(集合)からのアファインマップ(写像)の定義を知っている。
- 読者は、ファイナイト(有限)次元リアル(実)ベクトルたちスペース(空間)に対するカノニカル(自然な)トポロジーの定義を知っている。
-
読者は、ファイナイト(有限)ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)に対するカノニカル(自然な)
アトラスの定義を知っている。 - 読者は、トポロジカルスペース(空間)のサブセット(部分集合)のサブスペース(部分空間)トポロジーの定義を知っている。
-
読者は、任意のトポロジカルスペース(空間)たち間マップ(写像)は任意のポイントにおいてコンティニュアス(連続)である、もしも、当該スペース(空間)たちは何らかの
マニフォールド(多様体)たちのサブスペース(部分空間)たちであり、当該ポイントおよび当該ポイントイメージ(像)の周りに当該マニフォールド(多様体)たちのチャートたちがあり、当該チャートオープンサブセット(部分集合)たち間マップ(写像)で元のマップ(写像)へリストリクテッド(制限される)なもので、そのコーディネート( 座標)たちファンクション(関数)のリストリクション(制限)がコンティニュアス(連続)であるものがある場合という命題を認めている。 - 読者は、任意のコンティヌアス(連続)マップ(写像)の、ドメイン(定義域)およびコドメイン(余域)についてのリストリクション(制限)はコンティヌアス(連続)であるという命題を認めている。
ターゲットコンテキスト
- 読者は、任意のファイナイト(有限)ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)上のベースポイントたちのアファインインディペンデント(独立)でないかもしれない任意のセット(集合)によってスパンされる(張られる)アファインまたはコンベックスセット(集合)から任意のファイナイト(有限)ディメンショナル(次元)リアル(実)ベクトルたちスペース(空間)の中への任意のアファインマップ(写像)はカノニカル(自然な)トポロジーたちに関してコンティニュアス(連続)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 自然言語記述
任意の
3: 証明
当該ベースポイントたちのアファインインディペンデント(独立)サブセット(部分集合)
私たちは、任意のトポロジカルスペース(空間)たち間マップ(写像)は任意のポイントにおいてコンティニュアス(連続)である、もしも、当該スペース(空間)たちは何らかの
各
したがって、任意のトポロジカルスペース(空間)たち間マップ(写像)は任意のポイントにおいてコンティニュアス(連続)である、もしも、当該スペース(空間)たちは何らかの