トポロジカルスペース(空間)およびその、ユークリディアントポロジカルスペース(空間)たちとの2つのプロダクトたちに対して、プロダクトたち間のインジェクティブ(単射)コンティニュアス(連続)マップ(写像)でファイバー維持でファイバー上でリニア(線形)なものは、コンティニュアス(連続)エンベディング(埋め込み)であることの記述/証明
話題
About: トポロジカルスペース(空間)
この記事の目次
開始コンテキスト
- 読者は、プロダクトトポロジーの定義を知っている。
- 読者は、ユークリディアントポロジカルスペース(空間)の定義を知っている。
- 読者は、インジェクション(単射)の定義を知っている。
- 読者は、コンティヌアス(連続)マップ(写像)の定義を知っている。
- 読者は、コンティヌアス(連続)エンベディング(埋め込み)の定義を知っている。
- 読者は、任意のトポロジカルスペース(空間)およびその、任意のユークリディアントポロジカルスペース(空間)たちとの2つのプロダクトたちに対して、当該プロダクトたち間の任意のマップ(写像)でファイバー維持で各ファイバー上でリニア(線形)なものはコンティニュアス(連続)である、もしも、カノニカル(正典)マトリックス(行列)がコンティニュアス(連続)である場合、そしてその場合に限って、という命題を認めている。
- 読者は、任意のトポロジカルスペース(空間)間マップ(写像)はコンティヌアス(連続)である、もしも、そのマップ(写像)の、ドメイン(定義域)の、アンカウンタブル(不可算)でもよいあるオープンカバー(開被覆)の各オープンセット(開集合)、への、ドメイン(定義域)リストリクション(制限)がコンティヌアス(連続)である場合、という命題を認めている。
- 読者は、任意のトポロジカルスペース(空間)から任意のファイナイト(有限)プロダクトトポロジカルスペース(空間)の中への任意のマップ(写像)はコンティニュアス(連続)である、もしも、全てのコンポーネントマップ(写像)たちがコンティニュアス(連続)である場合、そしてその場合に限って、という命題を認めている。
ターゲットコンテキスト
- 読者は、任意のトポロジカルスペース(空間)およびその、任意のユークリディアントポロジカルスペース(空間)たちとの2つのプロダクトたちに対して、当該プロダクトたち間の任意のインジェクティブ(単射)コンティニュアス(連続)マップ(写像)でファイバー維持で各ファイバー上でリニア(線形)なものは、コンティニュアス(連続)エンベディング(埋め込み)であるという命題の記述および証明を得る。
オリエンテーション
本サイトにてこれまで議論された定義たちの一覧があります。
本サイトにてこれまで議論された命題たちの一覧があります。
本体
1: 構造化された記述
ここに'構造化された記述'のルールたちがある。
エンティティ(実体)たち:
//
ステートメント(言明)たち:
//
2: 注
3: 証明
全体戦略: ステップ1:
ステップ1:
ステップ2:
それが意味するのは、
したがって、
ステップ3:
そうした
ステップ4:
ステップ5:
私たちが見る必要のあることは、
当該インバーティブル(可逆)
各
任意のトポロジカルスペース(空間)およびその、任意のユークリディアントポロジカルスペース(空間)たちとの2つのプロダクトたちに対して、当該プロダクトたち間の任意のマップ(写像)でファイバー維持で各ファイバー上でリニア(線形)なものはコンティニュアス(連続)である、もしも、カノニカル(正典)マトリックス(行列)がコンティニュアス(連続)である場合、そしてその場合に限って、という命題によって、マップ(写像)
すると、
したがって、
ステップ6:
したがって、
したがって、